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Abstract-—The free vibration analysis of homogeneous and laminated doubly curved shells on
rectangular planform and made of an orthotropic material has been presented using the three-
dimensional elasticity equations. A solution is obtained utilizing the asumption that the ratio of the
shell thickness to its middle surface radius is negligible, as compared to unity. However, it is shown
that by dividing the shell thickness into layers of smaller thickness and matching the interfuce
displacement and stress continuity conditions, very accurate results can be obtained even for very
thick shells. The two-dimensional shell theorics have been compared for their accuracy in the light
of the present three-dimensional clasticity analysis.

INTRODUCTION

Structural applications of laminated composite shells are ever on the increase due to their
high-modulus and low-density material propertics. As a consequence, analysis of such
structures is gaining considerable importance over the years and demands accurate analysis.
It is well known that the composite materials are anisotropic in nature and are more often
treated as orthotropic materials. The analysis of such structures using the three-dimensional
(3-Dy elasticity theory involves considerable mathematical manipulation, as may be seen
in the work of Shrinivas and Rao (1970) for the case of rectangular plates. Due to the
presence of curvature, as in the case of cylindrical and spherical shells, the problem becomes
unapproachable through the 3-D equations since the governing differential equations for
such shells involve variable cocfficients.

In spite of the presence of inherent mathematical complexities, many useful solutions
1o free vibration problems of cylindrical and spherical shells made of isotropic material
have been given by Greenspon (1958), Gazis (1959), Shah et al. (1969a,b) and Eringen and
Suhubi (1975). It may be noted from these studies that for shells made of isotropic materials,
governing differential equations of the 3-D elasticity can be easily solved in terms of
displacement potentials in which variation of displacements in the normal dircction is finally
expressed in terms of Bessel functions, However, a similar approach is not possible if the
material is orthotropic and hence the solution is usually obtained using the Frobenius
method —normally employed when solving differential equations with variable coefficients.
This approach is used in the works of Chou and Achenbach (1972), Armenikas and Reitz
(1973) and Srinivas (1974) for the case of closed cylindrical shells. Numerical methods such
as the extended Ritz method, have been used by Nelson et a/. (1971) to obtain the vibration
frequencies of closed finite length cylinders, and by Nelson (1973) for spherical shells.

It may be observed that the success of the 3-D analysis of shells depends on the ability
to solve the resulting differential equations with variable coefficients. In order to avoid
going through the complex mathematical manipulations, researchers over the years have
reduced the 3-D shell problem to a two-dimensional problem, as may be found in the
monumental works of Fligge (1962), Gol'denveizer (1961), Sanders (1959) and Timo-
shenko and Woinowsky-Krieger (1959). Thus, within the framework of different shell
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theories the vibration problems of shells have received considerable attention, for example,
see Leissa (1973), Niordson (1985) and Seide (1975).

It may be said here that, besides being 2-D approximations, most of these 2-D theories
fail to satisfy the interface transverse stress continuity conditions in the case of laminated
structures. This is so because firstly, most 2-D theories do not account for the transverse
normal stress, and secondly since they are based on an assumed displacement form, it is
very difficult to select a displacement form which results in the continuity of transverse
stresses across the interfaces of an arbitrarily laminated shell. It is easy to satisfy the
interface continuity conditions if the laminated shell is treated as a 3-D problem since all
the stresses are now functions of the normal coordinate (z). The complex mathematical
manipulations can still be avoided for some doubly curved, simply supported shells without
reducing them to 2-D cases, but by reducing the governing equations to those with constant
coeflicients and thus retaining the 3-D characteristic of the problem. The resuits from such
an analysis are useful in validating the less approximate 2-D theories.

It may be said here that, to date, the vibration problems of open cylindrical shell and
doubly curved shell have not been solved using the analytical approach to treat the 3-D
elasticity equations. In this paper an attempt has been made to solve these problems using
the 3-D equations. In the present 3-D analysis of simply supported, doubly curved shallow
shells of rectangular planform, the displacements are chosen to vary trignometrically in the
x- and y-directions {(which are the Cartesian coordinates of the projection of the middle
surface on the x—y plane). The three governing coupled partial differential equations (PDEs)
are reduced to three coupled ODEs with the normal coordinate (z) as the independent
variable. These three coupled ODEs are then solved to obtain the complete solution. In the
case of luminated shells cach ply is treated as a homogeneous shell and by satisfying the
interfuce and exterior surface conditions, a frequency determinant is set up and solved.

BASIC EQUATIONS OF THE THREE-DIMENSIONAL ELASTICITY

For an open shallow shell, the middle surface can be defined by a set of Cartesian
coordinate systems as shown in Fig. 1. In the present analysis we restrict our attention to
the analysis of doubly curved, shallow shells on rectangular planform with zero twist.
Such surfaces are defined by = = x*/2R, +y*/2R,. The paraboloid of revolution on square
planform, the translational shell on rectangular planform and the spherical shell on square
planform are the class of surfuces which can be treated by the present analysis. Assuming
the twist of the surface to be zero, the strain displacement relations of the 3-D elasticity

Thickness Details Layer n

for
Laminated Shell
Fig. 1. The dimensions and coordinate systcm for a doubly curved shallow shell.
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equations corresponding to the present problem are written (Saada, 1974) as
R ][Eu_{__u_’_]. . [ R, :][év+w} s_é_w
B = Ri+:z]léx RS 7 LR:+:z]léy R, *T oz
R €u+ Ry g_. _[x. ow _u_]+g3
o= [ R¥z)ay TR+ TR x RV e
R, w0 o
ez {Rzﬂ] [53 B 'EE]+ 2 M

In these equations, x, y and = are the Cartesian coordinates in which z is measured from
the middle surface of the shell; u, v and w are the displacements in the x-, y- and z-
directions; R, and R, are the middle surface radii of curvature (which are assumed to be
constant) ; g, &, and &, are the normal strains in the x-, y- and z-directions; and y,,, 7. and
7. are the shedr strains. In order to reduce the system of equations with variable coefficients
to those with constant coefficients, the following assumptions are made:

R TR
e [

For these assumptions to be true, it is essential that (A/R,) and (#/R;) « 1. Thus, eqns
(2) can casily be satisfied if the shell is slightly curved or if the thickness of the shell is very
small compared to the radii of curvatures. Thus in the case of thick shells, the thickness of
the shell is to be divided into a number of layers with smaller thickness so that egns (2) arce
satistied. This will allow us to obtain the exact values for thick shells. Utilizing eqns (2) in
eyns (1) the strain -displacement relations are rewritten as

o Ou + W b w ow

b= ax R, b = dy * R,’ b= 02
. Qv 4 ’u _ ow + du wu . ow + v v 3)
STy ST TR Ty T TR,

The stress-strain relations for an orthotropic material read

o Ci Ci Culle
g, |= C;g Cn ng €, (43)
g, C;; Cn CJJ &;

Ty = Cos?rs Tue = Caa¥ues Ty = Cyg¥yee (4b)
Here, o,, o, and o, are the normal stresses; t.,, t.; and t,. are the shear stresses; and C;;

are the elastic constants of the orthotropic material. Usmg eqn (2), the 3-D stress equilibrium
equations (Sauada, 1974) can be written as
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In the above equations. ¢ is the time coordinate and p is the density of the material per unit
volume. Substituting the stress—strain relations (4), via the strain-displacement relations
(3), the above stress equilibrium equations can be written in terms of three displacements
as

Tiad ¢ &? C
Cu u+C666“+C44;?+[C“+ “:)&i [24**‘——:]&'1“

¢ R, oz R, R.1R,
C,,egl, +C2,§ 2 +C3,g : [—%—’- + iﬂ%’{i{: + li] C‘;’: ¢
[C”“CR"' ~Cu C";’C'z] Ou +[C,‘+C“]aa1a +[Ca3+Css) ; :

{ | w CL‘“‘CH C33+C23—2C;3 Cw_;"‘"C:z {?:W
+[Rl * E;]C” ‘?: [ R% + R|R3 R§ e T

The above cquations are the required equilibrium equations and they are differential
cquations with constant cocflicients. Had we not made use of the assumptions in egns (2) the
above equilibrium equations would have had cocflicients involving the normal coordinate 2,
the solution of which would have caused a great deal of mathematical difficultics. In the
next section, the solution of eqns (6) is sought using the method of scpuration of variables.

SOLUTION OF THE 3-D EQUILIBRIUM EQUATIONS

The solution of the equilibrium egns (6) is difficult to obtain for a given general
boundary and surfuce conditions. However, all-round simply supported shells render the
solution of these equations in terms of trigonometric functions possible. The following
modal solution for displacements and stresses satisfies the simply supported boundary
conditions:

w="U,,cos Mxsin NvsinQt; o,= S, sin Mxsin Nysin Q¢

= V,,sin Mxcos Nysin Qt; G, = S, sin MX sin Ny sin Qs

w= W,,sin Mxsin NysinQr; o, =38,,,sin Mxsin NysinQs;
T = Teomn €Os Mxsin NysinQr; 1. = T,.,., sin Mx cos NysinQr;

Ty, = Topn €0S Mx cos Ny sin Q, (7

M =mnfa and N = nn/b.

Here, « and b are the dimensions of the shell in the x- and y-direction; m and # are the
number of half-waves in the x- and y-direction ; and Q is the radian frequency associated
with the mode (m,n). In the above modal solution we note that U,,. V.. and W, are
functions of the normal coordinate - and are to be determined as the solution of the
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following ODEs, which are obtained after substituting eqns (7) in eqns (6) as

LyUm+L Ve + L 1sW,, =0 (8a)
Ly Upn+ Ly Voot Ly W,, =0 (8b)
Ly U+ L2V + L33 Wy = 0, (8¢c)

where the differential operators L;; are given by

-

d
Ly, —a,d s+ay-+ay, Lip=L; =a,

d:
d 2 d
L,3=asa—:+a6; L22=a’7&-_—2+68;+39
d d
L23=am§:+0n: Lj, =aaza—_+au
d : d
Ly:=aigz+ais: Ly =aiggz+an g +aw: 9)

a,~ay appearing in eqns (9) have the following definitions:

1 l 2 C .
a=Cy, ay= [E-{‘— ;{;]Cui ;= “["‘;a"}' ra ]f—C“Mz-C“NZ-}-pQ‘

Cn+2Cy, + Clz+C44]M

g = ~[Cri+Co JMN; a5 = [Cyy+Ciu]M; abﬁ[ R R
{ 2
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i | 2 |C
=Cy5i dy= [R R ]Csw Uy = "‘[‘&‘; + - ] R” —CosM?*~ ~Cy N +pQ?
H 3 3

Ca+2C;; C|z+css

tyy = [Cay+Cs] N U||=[ ]Nv ay; = —{C,+CuM

R, R,
(C, +Cyy~C;3 Cpa—C
@y = = R“ L hR H]Mi ays = [Cyy+CssiN
- H b4
(€114 C55—Cy;  C13—Cs o1
ﬂts=“ Ri; > 4+ ‘R‘ ilN; e = Cyy; “13=[§"‘ R]Css
[C,—C,, Ci3+Cy—2C,; Cy-C . R
aw=| Hni LA R.;ez 2y ,Ri 22]-—-C.4M‘—C55N2+p9'. (10)

The solution of eqns (8) are obtained by expressing U,,. ¥,., and W,, in terms of a
displacement potential function ¢, as follows:

Upn = (LyaLlay=L3L22)Pmn: Vaw= (Li3L2y =Ly L11)d,m
Won = (Lanz"LuL:lN’m- (“)

Substituting the above solution in eqns (8). it can be seen that eqns (8a) and (8b) are
satisfied identically and eqn (8c) reduces to the following governing equation in ¢,,,:

dﬁ dS d-l d d d
”‘E??”’d‘f* 3d_?+md:f+ sd?'*'fo d‘f dc =0, (12)
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In the above equation and in the subsequent analysis, subscripts “mn™ have been dropped
for the sake of simplicity and the expressions for ¢,~¢, are given in the Appendix. Since eqn
(12) is of the order six, the solution ¢ involves six arbitrary constants and is sought in the
form:

¢ =e" (13)
and six as are obtained as the roots of the following equation:
cab+ca’ ot + e +osat +ogad oy = 0. (14)

The exact expression for ¢ depends on the nature of the roots of eqn (14), for example, for
six real and distinct roots we can write

Pp=A e+ A"+ 4, ¥ 4 A A e+ 4 €5 {15a)

or in the matrix notation as
¢ =F5; (15b)
here & = {A\.A;, A1, A A5 A} is a column vector of six constants and
F = {F,, Fy, F, Fy, Fs. F,} is a row vector in which F,~F are the cocflicients of 4,4, and
are functions of the normal coordinate z. Here, 4,~4, are the six arbitrary constants to be

determined using the following six traction-free surface conditions

T o.=0 (atz= +h2)

T:.=0; 1.=0;
t.=0; 1.=0; o.,=0 (atz= —h/2). (16)

Once ¢ is obtained from eqn (15) the displacements U, ¥ and W can be computed
using eqns (11); strains can be computed from eqns (3); and the stresses from eqns (4) as

U b' b; b3 b4

"
Vi=1lbs by by by ' (17a)
Txy s buo bn by, ¢
o'
W [bis b bis bie bir]|®"
Te|=|bis by b by bn||o" (17b)
T, n b by by byl ¢
¢
- é¥
&
S, by by by by by by o'
S, =1bss bys bys b3y by by o | (17c)
S: b-"} b‘l b‘z b43 b,‘,‘ b" ¢!
L ¢

In the above, [ indicates differentiation with respect to - and the expressions for &,-b;
are given in the Appendix. Thus knowing the complete variation of the stresses and
displacements in the z-direction, the frequency determinant can be set up by using the six,
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traction-free surface conditions (16) as

-Q-D0
['D,]J_ D =0, (18)

where *D, and ~D, are (3 x 6) matrices defined as follows:

- FY 1
FIV
b bay by by bys bas Fitt
Do=| 0 by bie by by b F! . (19a)
0 by bas bas by by F
L F J sween2

Also, we define the following matrix which will be useful in the analysis of laminated and
sandwich-type shells

Flv
biy b bis by bi]|F"
*Du=|0 b b & b . (19b)
0 by by by, byl|F
F atzwh/2

Similarly, "D, and ~D, can be obtained by evaluating F, F', etc. at = = —4/2, in eqns (19).
It is to be noted here that the frequency (Q) appears implicitly in the expressions of the
coefficients of D and is to be determined by equating the determinant of D to zero. This
compiletes the formulation of the problem and its solution for a shell with given geometric
and material parameters (R, R,, a, b, h and C,)). It should be pointed out here that the
above procedure holds for a single layered shell and in the case of laminated and sandwich
shells, there are six arbitrary constants for each layer. The frequency determinant is to be
set up by using the interface stress and displacement continuity conditions, in addition to
the known traction-free surface conditions. For layers { and i+ ! the interface conditions
arc:

U (N U (i+ 1) vV (N v i+ 1)
L__hl = L _ k| = L h
i=-3 z= 3 zZ= 3 T= 4 3
W 5] w G+ 1) sz 0] T.. i+ 1)
I ] k| = Lk
| T 73 =73 =73 F=t3
FT,, 0] Tyz U+ 1 S. 0] S. i+ 1)
Lot = ) B __h| = o h
i =732 I=*3 =73 F=73
(20a)

or in the matrix notation

“DPSN = *DPYTNEI+Y  and -DPEN = +DI+ NI, (20b)
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For exampile, if the shell is made up of two layers there will be 12 constants (4,~4,,,
six for each layer), to be determined using the six surface traction conditions [see eqns (16)]
and six interface (three transverse stresses and three displacements) continuity conditions
[see eqns (20)]. which results in 12 homogeneous algebraic equations as

+Df,” 0

’Df,“ ~+D;:) S0

) T (E [‘5::) =Dé=0. 2n
U 2

It is to be noted here that when the ratios #/R, and A/R, are not small enough to be
considered as « I, the thickness of the shell is divided into a number of layers with smaller
thickness values so that for any layer, the values of the ratios #/R, and A/R; become «1:
and the solution is obtained by using the interface stress and displacement continuity
conditions (20} and the surface traction conditions (16). For laminated shells and sandwich-
type shells for which #/R, and A/R, are not too small, each layer shall be divided into sub-
layers with sufficiently smaller #/R, and A/R; ratios. However, a proper value for #/R,
and A/R, can be chosen by conducting some numerical experiments and observing the
convergence of the frequency values.

Furthermore, it is to be noted here that the corresponding equations for rectangular
plates can be deduced from the present analysis by using /R, = /R, = 0, and those for
cylindrical shells by using 1/R, =0 and R, = R. Thus, the present procedure and the
corresponding computer coding has been checked by computing the results for isotropic
and orthotropic plates (Srinivas and Rao, 1970). Also, we note that the approximations
made in egns (2) hold true for rectangular plates and hence exact results can be obtained
without subdividing the thickness of the plate. Since it is intended to compare the 2-D shell
theories with the present exact 3-D analysis, a brief discussion of the 2-D theories has been
included here for the sake of continuity and completeness.

TWO-DIMENSIONAL DOUBLE CURVED SHALLOW SHELL THEORY

The 2-D shell theories may be classified into three categories: the Thin Shell Theories
(TST), the Shear Deformation Theories, and the Higher-Order Theories. The discussion of
these various theories may be found in the publications by Bhimaraddi (1987) and Stein
(1986). Here we discuss briefly the parabollic shear deformation theory (Bhimaraddi; 1984,
1987) in the present context of the doubly curved shells. In this theory, the displacements
are expressed as

(7 W i a “’{)

U=ty + fly~2 . p=rCp+fr,—27—; w=w 22
b fl 8x! & f} (‘;}' o ( )

where f and its first derivative (f*) are functions of » only and are given as

l 4:? l df [ 4:* ]
—— e § % ¥ e T e — e 2
S=z1 31 S d: ! Wy @3

In these equations 1, vy and wy are the translations of a point on the shell middle surface;
and u, and v, are the rotations of a point on the middle surface in addition to the usual
flexural rotations éw,o/dx and dwe/dy. All the middle surface displacement paramecters (viz.
g, Ugs Wa, 4y, ) are functions of (x, y) only, and are independent of the = coordinate. The
strains are written as

X
.= Quy | Cuy _@wy  wy . = Sy ff’“z_; _wy L
“ T ox ox T ox* R ' oy oy Tt R,

dve  Cug  Cuy L Ov 3wy
w (O oy ¥y v = fRp Y, = e e e LR, F . 4
R A AN Sl Pt v Pl Pt or M
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It may be observed that the transverse shear strains vanish on the top (- = h/2) and
bottom (z = —h/2) surfaces of the shell and they vary parabolically across the thickness.
It is to be noted here that the displacements corresponding to the Mindlin-type (in which
the transverse shear strains are constant across the thickness) Constant Shear Deformation
(CSD) theory, can be obtained if one uses f = - and also the classical Thin Shell Theory
can be deduced if one uses f = 0 in the above equations. In the case of CSD, the shear
correction factor is to be used to correct the deficiencies in that theory (non-parabolic
variation of shear stresses and non-vanishing of the shear stresses at the top and bottom
surfaces of the shell). Further development of the theory follows a standard routine which
can be obtained in Bhimaraddi (1984, 1987) and will not be repeated here for the sake of
brevity.

DISCUSSION OF NUMERICAL RESULTS

It is to be said here that the present elasticity analysis yields an infinite number of
frequencies for each combination of (m,n) values, whereas, the PSD and CSD yield five
frequencies and TST yields three frequencies. Of these frequencies. the lowest frequency
corresponds to the flexural mode of vibration and only this frequency has been computed
and discussed in this study. In the numerical computations of CSD, the shear correction
factor used corresponds to n°/12. Since this is the first time that the analysis for shallow
(on rectangular planform) cylindrical shells and spherical shells has been given using the
3-Dequations, all the numerical results have been given in a tabular form which are intended
to serve is bench-mark values for future studics. The typical orthotropic material propertics
correspond to:

E L, : o1 .|

I;': =25; I;‘:. =1; (; = GL"T =, %‘ =5t M= 0.25: p.,=003; p,. =04
Here £, E, and E, are the Young's moduli; G,,, G,. and G,. arc the shear moduli; and
s gt and g are the Poisson ratios. As noted carlicr in the case of thick shells for which
the assumptions in eqns (2) are not valid, the shell thickness has to be divided into a number
of layers such that for euch layer, eqns (2) hold true. A proper value for /R can be fixed
by conducting some numerical experiments in which the convergence of the frequency can
be observed.

Tables 1, 2 and 3 show the convergence studies for homogencous spherical shells on
rectangular planform with different ii/a and R/a ratios (Table 1), and with different wave
numbers (Table 2), and with different aspect ratios (Table 3). It may be observed from
these tables that as the number of divisions in the shell thickness increases, the frequency
values converge monotonically from above. This pattern of convergence is completely in
agreement with Rayleigh's principle and this also validates the present approach. Fur-
thermore, this suggests that the frequencies from the present analysis (without dividing the
shell thickness) are the upper bounds to the exact values. It may be scen from Table | that
as hja ratio of the shell increases and as R/a ratio decreases, one has to divide the thickness
of the shell into a greater number of layers to achieve the convergence of the results. For a

Table 1. Convergence studics on an orthotropic spherical shell frequency () with dilferent bja
and R/u ratios ((} = Qu\/p/E,: ab=1)(E,=25E,. G.,=G,, =\E,. G,.= \E,; u,=\;
. =003; u,. =04)

m=n=1, ah=1, Rjla=1 m=n=1, ab=1, hla=0.1

Nt hja=005 hjia=0.1 fa =015 Riu=13 Rlia=5 Ria =10

| 1.24313 1.50152 1.70293 1.27975 1.25902 1.25011

2 1.22140 1.44837 1.63018 1.27070 1.25565 1.24926

5 1.21511 1.43177 1.60515 1.26799 1.25464 1.24900
10 1.21421 1.42933 1.60137 1.26760 1.25450 1.24896
15 1.21404 1.42888 1.60066 1.26753 1.25447 1.24896
20 1.21403 1.42872 1.60041 1.26750 1.25446 1.24896

+ Number of divisions in the shell thickness.
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Table 2. Convergence studies on an orthotropic spherical shell frequency ({) with different
mode numbers (m=n) Q=Qua/p/E,: alb=1. Rla=1; hja=01) (E =25E,;
Ge=G,=1E,.G, = E p,= Lip, =003, 5, =04

Ny m=n=2 m=n=3 m=n=4 m=np=5 m=n=6 m=n=7

3.61086 6.09921 8.66825 L2715 13.89055 16.51733
3.55698 6.05942 8.63790 11.24693 1387052 16.50033
3.53794 6.04322 8.62408 11.23496 13.86002 16.49099
10 3.53503 6.04059 8.62166 11.23269 13.85787 16.48895
is 3.53449 6.04009 8.62119 11.23225 13.85744 16.48853
20 3.53429 6.03992 8.62103 11.23209 13.85729 16.48838

[V 3 e

Table 3. Convergence studies on an orthotropic translational shell frequency (£ with
different aspect (a/b) ratios ( = QaprE,: m=n=1; Rla= 1. hla=0.1} (£, = 25E,:
G.=G,=1E:1G.=E, p, =1t = 00310, =04)

N, ab=15 alb=2 alb =25 alb =3 alb =15 alb=35

{ 1.76559 2.13501 2.59033 362 368538 5.58788
2 171716 209170 2.55159 3.07769 365358 5.56270
$ 1.70218 2.07842 2.53980 3.06709 3.64392 5.55487
10 1.69998 2.07648 2.53808 3.06555 3.64252 3.53374
15 1.69957 2.07612 2.53776 3.06526 1.64225 5.55353
20 1.69943 2.07600 2.53765 3.06516 3.64216 5.55345

Table 4. Comparison of fundamental frequencies ({}) for orthotropic homogencous and_two-layered (0/90)
cylindrical shells for different Rfa and /g ratios (/b = 1, 1/R, = 0,0} = Qa\/p;’E,)

Homogenecous cylinder 0/90 Cylinder
Rla hia = 0,05 hia = 0.1 hja = 0.15 hia = 0.05 hia = 0.1 hia = 0.15
3D 089171 1.32416 161690 0.78683 1.04085 1.29099
i PSD 0.89791 133745 163718 0.79993 1LO9IRY 138174
CSD 089124 1.29858 1.55779 0.79798 1.07475 1.33274
TST 0.93015 1.57287 2.23906 0.80580 114313 1.54124
3D 0.76632 1.26744 1.59247 0.57252 0.93627 1.25377
- PSD 0.76857 1.27076 1.59664 0.58000 0.95664 1.28933
- CsD 0.76045 1.22790 1.51092 0.57733 0.93653 1.23527
TST 0.80747 1.52693 2.24197 0.58723 101398 1.45781
D 0.73968 1.25625 1.58789 0.52073 0.91442 1.24500
3 PSD 0.74045 1.25736 154856 0.52516 0.92642 190563
CsD 0.73246 1.21368 150158 0.52222 0.90563 121316
TST 0.78151 1.51784 2.24256 0.53294 0.98505 1.43751
3D 0.73004 1.2522% 1.58529 0.50110 0.90613 1.24090
4 PSD 0.73094 1.25259 1.58569 0.50415 0.91506 1.25977
CsD 0.72231 1.20860 1.49826 0.50109 0.89403 1.20454
TST 0.77213 1.51461 224277 0.51217 0.97408 1.42910
D 0.72552 1.25033 1.58424 0.49167 0.90200 1.23849
5 PSD 0.72625 1.25036 1.58436 0.49402 0.90953 1.25551
CsSD 0.71755 1.20624 1.49671 0.4909{ 0.88840 1.20020
TST 0.76773 151310 2.24286 0.50216 0.96870 142464
D 0.71944 1.24735 1.58254 0.47859 0.89564 1.23374
io PSD 0.71992 1.24738 1.58257 0.47997 0.90150 1.24875
s 0.71114 1.20307 1.49464 047677 0.88026 119342
TST 0.76182 1.51108 224299 0.48827 0.96074 1.41709
3D 0.711791 1.24633 1.58210 0.47509 0.89341 1.23140
20 PSD 0.71833 1.24663 1.58212 0.47625 0.89904 1.24626
csp 0.70952 1.20227 1.49412 0.47304 0.877719 119100
T8T 0.76033 1.51058 2.24303 0.48459 0.95819 1.41400
3-D oY 1.24612 1.58121 0.47365 0.89179 1.22905
© PSD 0.71780 1.24638 1.58197 0.47483 0.89761 1.24437
CsD 0.70898 1.20201 1.49394 0.47161 0.87640 1.18923
TST 0.75983 151041 2.24304 0.48317 0.95661 141139

3-D—Present 3-D analysis ; PSD— Parabolic Shear Deformation theory ; CSD—Constant Shear Deformation
theory : TST—Thin Shell Theory.
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shell with A/R = 0.01 (h/a =0.1 and R/a = 10), almost exact results are obtained with
N, =1 as may be inferred from this table. From Tables 2 and 3 one may observe that a
greater number of divisions have to be made in the shell thickness for lower modes and
lower aspect ratios to achieve the required convergence. Thus one can conclude that if the
h/R ratio of the shell is £0.01, no division of the thickness of the shell is required. It may
also be noted that for layered shells with A/R < 0.01 at its middle surface. no sub-division
of each layer is necessary. Thus all the numerical results presented in this paper have been
obtained by keeping the A/R ratio of <0.01 for any sub-layer.

Tables 4-6 depict frequency values for homogeneous and two-layered cylindrical shells
with different h/a. R/a and (m, n) values, and those for spherical shells are shown in Tables
7-9. One may observe from these tables that, in most cases, the frequency values for
homogeneous shells are higher as compared to those of the two-layered (0/90) shells. But
for higher modes, two-layered shells give higher frequencies than the homogeneous shells.
It may be seen from these tables that PSD and TST predict consistently higher frequency
values when compared with the 3-D analysis, whereas CSD predicts lower values in most
cases but for some (R/a = 1) two-layered shells, it predicts higher values.

From Tables 4 and 7 it may be said here that the errors in the 2-D theories increase
with increasing shell thickness. The errors in PSD and CSD are negligible for cylindrical
shells with i/a = 0.05 whereas, even for such a thin cylindrical shell the error in TST is
about 4.3% for homogeneous (R/a = 1) shells, and this error increases to 6% for homo-
geneous plates. Also, it may be said here that the errors in the 2-D theories are higher for
spherical shells as compared to those for cylindrical shells. For thick shells, the frequency
values from TST are in greater discrepancy when compared with the 3-D analysis, and

Table 5. Comparison of fundamental frequencies (§) for orthotropic homogencous cylindrical shells for different
wave numbers (a/b = |, Ryfa = |, hja = 0.1, 1/R, = 0,Q = Qa /p/E,)

n m=1 m =2 m=3 m =4 m=$ m=6
3D 1.32416 3.42856 5.65598 7.88524 10.10983 12.31165
| PSD 1.33745 3.43487 5.68570 8.00360 10.41998 1296862
CsD 1.29858 31953 5.13383 7.03869 8.91857 10.78286
TST 1.57257 5.26048 7.34788% 9.412%4 11.53382 13.68637
3-D 1.65929 3.59532 5.77045 7.09557 10.18638 12.39924
5 PsSD 1.69031 3.60790 5.80137 8.09173 10.49072 13.02658
- CSD 1.63768 3.36074 5.24850 7.13296 9.00273 10.86098
TST 1.99961 5.85093 9.08880 10.84096 12.72805 14.70735
3-D 2.50573 4.08989 6.10449 8.22842 10.38124 12.57257
3 PSD 2.53918 4.10523 6.13436 8.34022 10.68794 13.18882
CSD 2.44409 3.83876 5.57354 7.38087 9.20609 11.03596
TST 3.09808 6.45360 11.36729 12.87246 14.50117 16.26705
3-D 3.64582 4.89994 6.68608 8.67551 10.75359 12.87744
3 PSD 3.67091 49118} 6.71169 8.78055 11.04046 13.48058
CSD 3.49515 4.59461 6.12261 7.80606 9.55271 11.32941
TST 4.77389 7.53134 13.18665 15.26604 16.66900 18.22746
3-D 4.92951 5.93701 7.48804 9.31267 11.27750 13.32086
5 PSD 4.94282 5.94121 7.50705 9.40951 11.55338 13.90986
CsSD 4.65406 5.53630 6.85888 8.39601 10.04962 11.74416
TST 6.89750 9.13471 14.23784 17.87185 19.09700 20.47352
3-D 6.28273 7.11414 8.45781 10.11238 11.94887 13.89574
6 PSD 6.28481 7.11024 8.47035 10.20163 12.21433 14.47086
CsD 5.85751 6.58546 7.73038 9.12068 10.65287 12.27984
TST 9.36898 11.20323 15.62888 20.59374 21.59722 2292106
3-D 7.66909 8.37330 9.54541 11.04051 12.74557 14.58772
7 PSD 7.66367 8.36430 9.55452 11.12540 13.00356 15.15128
CSD 7.07696 7.69351 8.69288 9.84800 11.36766 12.89485
TST 12.10934 13.64076 17.42526 23.26989 24.41370 25.51177
3-D 9.07057 9.68036 10.03301 12.06614 13.64472 15.38031
8 PSD 9.06401 9.67213 10.72479 12.15254 13.90077 15.93704
CSD 8.29955 8.83331 9.71513 10.85103 12.16411 13.60064
TST 15.05423 16.35665 19.58430 25.20054 27.21024 28.20581

SAS 27:7-G
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Table 6. Comparison of fundamental frequencies (§}) for orthotropic two-layered (0/90) cylindrical shells for
different wave numbers (¢/b = |, Ryfa = 1. h/la=0.1. l/R, = 0.8 = Qa./p/E,)

n m=| m=2 m=13 m=4 m=35 m=26
3-D 1.04085 241276 4.11579 593372 7.78184 9.62817
( PSD 1.09189 2.45460 4.23881 6.21438 8.29333 10.45184
CsD 1.07475 2.34178 3.89006 5.51004 7.13494 8.74763
TST 1.14313 2.83420 5.57063 9.18375 13.46425 17.41943
3-D 2.09560 3.00690 4.47600 6.17789 7.96114 9.76724
2 PSD 2.23166 3.11351 4.63052 6.47026 8.47328 10.58518
CsD 2.10261 291833 4.21882 5.71108 7.26438 8.83414
TST 2.64497 3.77786 6.19582 9.64978 13.84158 18.53581
3-D 3.79493 4.40105 5.53384 6.99587 8.61936 10.31605
3 PSD 4.03139 4.60653 5.75652 7.32258 9.14262 11.12949
CSD 3.64408 4.18708 S8t 6.45052 7.85330 9.31876
TST 5.46968 6.17649 7.94639 10.85995 14.66478 19.07848
D 5.63314 6.08162 6.96436 818815 9.62322 1117793
4 PSD 6.03517 6.45147 7.32643 R.61674 10.21128 12.02542
CcsD 5.27341 5.67727 6.44935 7.50530 8.73691 10.07120
TST 9.28491 9.64745 10.85959 13.08162 18.26925 20.20189
3-D 7.48761 7.85500 8.57043 9.60352 10.86447 12.27431
5 PSD 8.13620 8.46125 9.15315 10.21892 11.59781 13.22603
CcsD 6.90648 7.23117 7.85529 8.74126 9.81579 11.01692
TST 13.49825 13.84378 14.66423 16.26830 18.76569 22.07201
3-D 8.68429 9.49798 10.25407 11.14312 12.25850 13.53670
6 PSD 10.31101 10.57769 11.14483 12.07983 11.02184 12.10090
CcSD 8.52564 8.80021 9.32326 10.07983 11.02184 12.10090
TST 17.17463 18.48576 19.06173 20.19360 22.06780 24.71657
3-D 11.18770 11.44636 11.85606 12.74791 13.74617 1491182
7 PSD 12.56186 12, 78788 13.26611 14.02998 15.07075 16.36456
CsD 10.12930 10.36944 10.82037 11.47820 12.31147 13.28365
TST 19.13495 23.24020 23.80560 24.61440 25.99090 28.04362
3D 12.99253 13.22186 13.68342 14.29142 15.28707 16.35888
8 PSD 14.98969 15.09425 15.50632 16.16905 17.08463 18.24131
CsD 11.71966 11.83443 12.33183 12.91299 13.65742 14.53780

TST 21.01155 27.22880 28.67141 29.32695 30.34223 31.90483
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Table 7. Compurison of fundumental frequencies () for orthotropic homogeneous and two-layered (0/90)
spherical shells for different R;a and h/a ratios (a/b = 1. = Qa,/p/E,)

Homogeneous shell 0,90 Shell

Ria hia =005 ha=01  hja=015 ha=005 ha=01  hla=0.15
3-D 1.21403 1.42872 1.60041 1.29835 1.39974 1.51936
) PSD 1.28525 1.60538 1.84983 1.32595 1.49075 1.68141
CsD 1.28089 1.57496 1.78352 1.32483 [.48008 1.64797
TST 1.30657 1.79568 2.37996 1.33000 1.52391 1.78940
3D 0.87702 1.29295 1.58068 0.79577 1.05528 13111
- PSD 0.90697 1.35302 1.65888 0.81059 1.09708 1.38083
- Csb 0.90021 1.31347 1.57769 0.80870 1.08054 1.33375
TST 0.93961 1.59277 228118 0.81618 1.14507 1.52705
3D 0.793(5 1.26750 1.58194 0.64044 0.96917 1.26650
1 PSD 0.80865 1.29559 161714 0.04949 0.99330 1.30815
N CsD 0.80013 1.25354 1.53231 0.64713 0.97455 1.25698
TST 0.84509 1.54813 2.26036 0.65602 1.04657 1.46512
3D 0.76111 1.25859 1.58279 0.57419 0.93637 1.25032
4 PSD 0.77044 1.27445 L6096 0.58038 095306 1.28092
CSD 0.76234 2314 1.51576 0.57775 0.93332 1.22810
TST 0.80950 1.53186 2.25285 0.58749 1.00862 1.44211
3D .74572 1.25440 1.58326 0.54039 0.92065 1.24272
5 PSD 0.75203 1.26446 1.59482 0.54500 093361 1.26797
CsD 0.74366 1.22096 1.50798 0.54219 091338 1.21434
ST 0.79206 1.52420 224934 0.55247 0.99034 1.43120
D 0.72460 1.24896 1.58396 049127 0.89912 1.23249
1 PSD 0.72654 1.25094 1.58520 0.49341 0.90679 1.25034
CsSD 0.71754 1.20679 1.49748 0.49031 0.88584 1.19559
TST 0.76804 1.51388 2.24462 0.50149 0.96519 1.41639
3-D 0.71920 1.24751 1.58415 0.47812 0.89363 1.22992
0 PSD 0.72000 1.24752 1.58278 0.47955 0.89992 1.24586
- sSD 0.70121 1.20321 1.49483 0.47636 0.87877 1.19083
TST 0.76189 1.51128 224343 0.48782 0.95876 1.41264
D 0.71739 1.24612 1.581214 0.47365 0.89179 1.22905
’ PSD 0.71780 1.24638 1.58197 0.47483 0.89761 1.24437
- CSD 0.70898 1.20201 1.49394 047161 0.87640 1.18923

TST 0.75983 1.51041 2.24304 0.48317 0.95661 1.41139
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Table 8. Comparison of fundamental frequencies () for orthotropic homogeneous spherical shells for different
wave numbers (a/b = 1, R\Ja = RyJa= 1, hja = 0.1, 0 = Qa./p/E,)

n m=1 m=2 m=3 m=4 m=35 m=6
3-D 1.42872 3.27331 5.50649 71.75736 9.99933 12.23533
1 PSD 1.60538 3.46843 5.68772 7.99846 10.41384 12.96535
CsD 1.57496 3.23244 5.13567 7.03161 8.90895 10.77278
TST 1.78568 5.36828 7.35255 9.41377 11.53411 13.68648
3-D 2.07600 3.53429 5.66760 7.87736 10.09809 12.32027
5 PSD 2.21695 3.71369 5.83763 8.10798 10.49975 13.03416
© CSD 2.18070 3.47708 5.28908 7.14946 9.00877 13.86177
TST 2.44004 5.91644 9.10874 10.84443 12.72913 14.70778
3-D 3.06516 4.10922 6.03992 8.15349 10.31955 12.50657
3 PSD 3.17490 4.26364 6.19484 8.37051 10.70610 13.20203
CSD 3.10694 4.01268 5.64279 7.41557 9.22524 11.04674
TST 3.59212 6.52707 11.44004 12.87985 14.50339 16.26794
3-D 4.32251 4.98212 6.65598 8.62103 10.59572 12.82174
4 PSD 4.34029 5.10655 6.79153 8.82192 11.06554 13.49799
CSD 4.20587 4.80924 6.21447 7.85502 9.58212 11.34823
TST 5.22100 7.61657 13.29738 15.27933 16.67263 18.22890
3-D 5.55345 6.06453 7.48802 9.27688 11.23209 13.27414
5 PSD 5.61708 6.16032 7.60257 9.46037 11.58443 13.93101
CsD 5.38348 5.78017 6.96917 8.45684 10.07850 11.76950
TST 7.26633 9.22016 14.27403 17.89553 19.10233 20.47558
3-D 6.90523 7.27443 B.48318 10.09355 11.91499 13.85729
6 PSD 6.95129 7.3465! 8.57864 10.26078 12.25076 14.49551
CcsD 6.59072 6.85176 7.85617 9.181K2 10.69807 12.30179
TST 9.65830 11.27930 15.65315 20.64238 21.70469 22.92382
3-D 8.28209 8.55810 9.59200 11.03685 12.72238 14.55700
7 PSD 8.31543 8.61333 9.67339 11.19186 13.04496 15.17923
CSD 7.80437 7.97794 8.83210 10.02834 11.41942 12.93077
TST 12.32775 13.70261 17.44443 23.433713 24.42396 25.51531
.D 9.66931 9.88399 10.77771 12.07596 13.63132 15.35680
8 PSD 9.69664 9.93085 10.85258 12.22547 13.94671 15.96812
CSD 9.01444 9.13267 9.86628 10.93976 12.22191 13.64107

TST 15.21175 16.40283 19.59905 25.27066 27.22444 28.21021
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Table 9. Comparison of fundamental frequencies (€) for orthotropic two-layered (0/90) spherical shells for
different wave numbers (a/b = 1, Ri/a = Rja =1, hia=0.1.Q = Qa./p/E,)

n m=1 m=2 m=3 m=4 m=3$ m=6
3-D 1.39974 2.43873 4.05310 5.84554 7.68958 8.79732
1 PSD 1.49075 2.56254 4.25854 6.20360 8.27291 10.43078
CSD 1.48008 2.46151 3.92396 5.51209 7.12350 8.73011
TST 1.52391 2.89707 5.50027 9.02660 13.24407 17.41747
3-D 2.44203 3.04522 4.41687 5.79381 8.03207 9.68411
s PSD 2.62378 3.23980 4.60005 6.46350 8.54558 10.56502
= CSD 2.52929 3.06519 4.26788 5.72230 7.25997 8.82298
TST 292179 3.82427 6.11914 9.48366 13.60235 18.23648
3-D 4.08410 443275 5.47411 6.90512 8.52349 10.22652
3 PSD 4.36988 4.72430 5.78704 7.31569 9.12123 11.10530
CSD 4.04792 4.33744 5.23700 6.46472 7.84913 9.30665
TST 5.54551 6.13159 7.83020 10.67702 14.42092 18.78285
3-D 5. 71021 6.11283 6.90916 8.09839 9.52445 11.08302
4 PSD 6.34133 6.56740 7.36517 8.61625 10.19310 12.00174
CSD 5.66932 5.83753 6.51731 7.52796 8.73729 10.06090
TST 9.03503 9.49056 10.67910 12.86521 16.01181 19.90538
3-D 7.40020 7.89044 8.52272 951883 10.76682 1217710
5 PSD 8.41897 8.57892 9.20134 10.22867 11.58767 13.20768
CSD 7.29670 7.40360 793734 8.77559 9.82431 11.01175
TST 12.97093 13.55461 14.40547 16.00500 18.48406 21.76722
D 9.03246 9.69485 10.21499 1106553 12.16473 13.44009
6 PsD {0.57303 10.69708 11.20196 12.05996 13.23292 14.67443
CsSD 8.90756 8.98359 9.41883 10.12649 11.04010 12.10281
TST 18.43306 18.01580 18.71242 19.87494 21.75386 24.39637
3-D 11.43566 11.49662 11.93697 12.67820 13.65780 14.81747
7 PSD 12.80345 12.90734 13.33031 14.06064 15.08097 16.36371
CSD 8.90756 8.98359 9.41883 10.12649 11.04010 12.10281
TST 16.43406 18.01580 18.71242 19.87494 21.75386 24.39637
3-D 13.24313 13.28095 13.66228 14.28615 15.20492 16.26823
8 PSD 15.11949 15.21162 15.57526 16.20775 17.10415 18.24960
CSD 12.07631 12.13174 12.44884 12.98151 13.69501 14.55550

TST 20.85831 26.32647 28.07046 28.87560 29.94918 31.53944
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hence make TST unacceptable for thick shells. As the radius of the shell increases, the error
in PSD decreases and that in CSD increases. It may be seen from these tables that the
predictions of PSD are remarkably accurate, even for thick shells with higher (m, n) values
than those of CSD, when compared with the 3-D analysis.

CONCLUSIONS

The three-dimensional elasticity solution for free vibration of doubly curved, shallow
shells on rectangular planform and made of an orthotropic material has been presented.
Using the assumption that the thickness to radius ratio is negligible compared to unity, the
governing equilibrium equations have been reduced to differential equations with constant
coefficients. Furthermore, by dividing the shell thickness into 2 number of layers. such that
their individual thickness to radius ratio is kept as low as practicable (and in this study it
is shown to be 1/100). very accurate results were obtained for thick shallow shells. Numerical
results indicate that the parabolic shear deformation theory and the thin shell theory
consistency overestimate the frequencies. whereas the Mindlin-type constant shear defor-
mation theory underestimates the frequencies in most cases, except in some cases when
compared with the present 3-D analysis. This indicates that the frequencies from the
parabolic shear deformation theory and the classical shell theory are the upper bounds
(bounds being narrowed in the case of the parabolic shear deformation theory), whereas
those from the Mindlin-type constant shear deformation theory are the lower bounds to
the actual values from the 3-D analysis. Comparison studies also indicate that the thin shell
theory results are unaceeptable for thick shells with a thickness-to-radius ratio of more than
1/20. The present analysis can easily be extended to shallow shell surfaces with twist,
such as a hyperbolic paraboloid (hypar shell), by including the twist term in the strain-
displicemnent relations (1) and the equilibrium equations (5).
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APPENDIX
Definitions of ¢,~¢, appearing in eqns (12) and (14):

cp=abiyi cx=abatanbdy,

€3 =ayb\s+apbitadis+ab, +anb,

Co =dyshyrapbvapb i tanb;+anh, +abva b
Cs = @by +a b+ anby tanh vanh +aby+aysb,
Co = by tayhi+abitanby+abytash,

¢7 = dygbyr+anh+ay b,
Definitions for b—b, appearing in eqn (17):

b, = —asas: by = —asay—au;, by = aa,y—aa,—agay,
by =a.d,, —agttys by = —ayayy by = —aa,,—ayay
by = —ayda—aya, Fdudyl by = —a +aa,
by = (Nb + Mb)Cuars bio = (Nby + Mb)Cos: by = (Nby+ MB))Cy
by = (N, +Mb)Cosi biy=a . by =aan+a,a,
by =aag+at+ayars: by =dae+aay; by =aa,—al
Buw = (hy+ Mb,)Casi byy = (hs+Mb o =bJR)Cas: bye = (by+Mbyy—hy/R)Cas
b = b+ Mb,=hJR)IC: by = (Mby;—=bJR)Cu: by = (hs+Nb,)Cy,
hoy = (b Nb =B R)Cssi by = {by+Nbys =B [R)C s
bro = (hy+ Nbyg =B/ RC st byy = (Nb 3 =by/RICss: by = 5,Cha

bro = :'Ci‘é".“‘ + %‘::h.,-l—C,.bH; by = [(;JT' + %’-]h“+c, s —Cy Mb, —C\,Nb,
b = :CE",! . _C}‘,(!.z?:h,,+C,,b.,,—C..Mby-Cl,Nb.

by = —% + %:b“-kC”b”—C”Mb; ~C\;Nb,

by = :%‘ + %:b.,—c,.um-c,:/vb.; byy = Ciybys

by = :%T - %zi:b”...cn;,“; by = [%—" + %]h“+cz,b.,»~C.3Mb. = CNb,
by = :%f + %:b;ﬁ-Cz;bu-—Cusz"C:szs

by = '%." + %—- Bre+Crsbys—C 3 Mby—C i Nb,

Bro = %_ + %:h.,—C.,Mh.—-Can..: bio = Cyshys

by = :%—"—‘ + %:bu+(7nbu: by = [% + i?]ha*‘cnbu'cuMbl —C)Nb;,
b= —%"—‘ + %:b,,+Cnb,.—C,,Mb,~—CnNh,

b= -%'l-‘ %:b..+C,,h.,——C'.,Mb,—-—C,,Nb,

bay = i%‘? + %:b.,—c,,Mb.-C:,Nh..




