# FREE VIBRATION ANALYSIS OF DOUBLY CURVED SHALLOW SHELLS ON RECTANGULAR PLANFORM USING THREE-DIMENSIONAL ELASTICITY THEORY

## ALAVANDI BHIMARADDI

Structural Engineering Group, Vikram Sarabhai Space Centre, Trivandrum 695022, India

#### (Received 24 February 1989; in revised form 25 March 1990)

Abstract—The free vibration analysis of homogeneous and laminated doubly curved shells on rectangular planform and made of an orthotropic material has been presented using the threedimensional elasticity equations. A solution is obtained utilizing the asumption that the ratio of the shell thickness to its middle surface radius is negligible, as compared to unity. However, it is shown that by dividing the shell thickness into layers of smaller thickness and matching the interface displacement and stress continuity conditions, very accurate results can be obtained even for very thick shells. The two-dimensional shell theories have been compared for their accuracy in the light of the present three-dimensional elasticity analysis.

### INTRODUCTION

Structural applications of laminated composite shells are ever on the increase due to their high-modulus and low-density material properties. As a consequence, analysis of such structures is gaining considerable importance over the years and demands accurate analysis. It is well known that the composite materials are anisotropic in nature and are more often treated as orthotropic materials. The analysis of such structures using the three-dimensional (3-D) elasticity theory involves considerable mathematical manipulation, as may be seen in the work of Shrinivas and Rao (1970) for the case of rectangular plates. Due to the presence of curvature, as in the case of cylindrical and spherical shells, the problem becomes unapproachable through the 3-D equations since the governing differential equations for such shells involve variable coefficients.

In spite of the presence of inherent mathematical complexities, many useful solutions to free vibration problems of cylindrical and spherical shells made of isotropic material have been given by Greenspon (1958), Gazis (1959), Shah *et al.* (1969a,b) and Eringen and Suhubi (1975). It may be noted from these studies that for shells made of isotropic materials, governing differential equations of the 3-D elasticity can be easily solved in terms of displacement potentials in which variation of displacements in the normal direction is finally expressed in terms of Bessel functions. However, a similar approach is not possible if the material is orthotropic and hence the solution is usually obtained using the Frobenius method—normally employed when solving differential equations with variable coefficients. This approach is used in the works of Chou and Achenbach (1972), Armenákas and Reitz (1973) and Srinivas (1974) for the case of closed cylindrical shells. Numerical methods such as the extended Ritz method, have been used by Nelson *et al.* (1971) to obtain the vibration frequencies of closed finite length cylinders, and by Nelson (1973) for spherical shells.

It may be observed that the success of the 3-D analysis of shells depends on the ability to solve the resulting differential equations with variable coefficients. In order to avoid going through the complex mathematical manipulations, researchers over the years have reduced the 3-D shell problem to a two-dimensional problem, as may be found in the monumental works of Flügge (1962), Gol'denveizer (1961), Sanders (1959) and Timoshenko and Woinowsky-Krieger (1959). Thus, within the framework of different shell theories the vibration problems of shells have received considerable attention, for example, see Leissa (1973), Niordson (1985) and Seide (1975).

It may be said here that, besides being 2-D approximations, most of these 2-D theories fail to satisfy the interface transverse stress continuity conditions in the case of laminated structures. This is so because firstly, most 2-D theories do not account for the transverse normal stress, and secondly since they are based on an assumed displacement form, it is very difficult to select a displacement form which results in the continuity of transverse stresses across the interfaces of an arbitrarily laminated shell. It is easy to satisfy the interface continuity conditions if the laminated shell is treated as a 3-D problem since all the stresses are now functions of the normal coordinate (z). The complex mathematical manipulations can still be avoided for some doubly curved, simply supported shells without reducing them to 2-D cases, but by reducing the governing equations to those with constant coefficients and thus retaining the 3-D characteristic of the problem. The results from such an analysis are useful in validating the less approximate 2-D theories.

It may be said here that, to date, the vibration problems of open cylindrical shell and doubly curved shell have not been solved using the analytical approach to treat the 3-D elasticity equations. In this paper an attempt has been made to solve these problems using the 3-D equations. In the present 3-D analysis of simply supported, doubly curved shallow shells of rectangular planform, the displacements are chosen to vary trignometrically in the x- and y-directions (which are the Cartesian coordinates of the projection of the middle surface on the x-y plane). The three governing coupled partial differential equations (PDEs) are reduced to three coupled ODEs with the normal coordinate (z) as the independent variable. These three coupled ODEs are then solved to obtain the complete solution. In the case of laminated shells each ply is treated as a homogeneous shell and by satisfying the interface and exterior surface conditions, a frequency determinant is set up and solved.

### BASIC EQUATIONS OF THE THREE-DIMENSIONAL ELASTICITY

For an open shallow shell, the middle surface can be defined by a set of Cartesian coordinate systems as shown in Fig. 1. In the present analysis we restrict our attention to the analysis of doubly curved, shallow shells on rectangular planform with zero twist. Such surfaces are defined by  $z = x^2/2R_1 + y^2/2R_2$ . The paraboloid of revolution on square planform, the translational shell on rectangular planform and the spherical shell on square planform are the class of surfaces which can be treated by the present analysis. Assuming the twist of the surface to be zero, the strain displacement relations of the 3-D elasticity



Fig. 1. The dimensions and coordinate system for a doubly curved shallow shell.

equations corresponding to the present problem are written (Saada, 1974) as

$$\varepsilon_{x} = \left[\frac{R_{1}}{R_{1}+z}\right] \left[\frac{\partial u}{\partial x} + \frac{w}{R_{1}}\right]; \quad \varepsilon_{y} = \left[\frac{R_{2}}{R_{2}+z}\right] \left[\frac{\partial v}{\partial y} + \frac{w}{R_{2}}\right]; \quad \varepsilon_{z} = \frac{\partial w}{\partial z}$$

$$\gamma_{xy} = \left[\frac{R_{1}}{R_{1}+z}\right] \frac{\partial u}{\partial y} + \left[\frac{R_{2}}{R_{2}+z}\right] \frac{\partial v}{\partial x}; \quad \gamma_{xz} = \left[\frac{R_{1}}{R_{1}+z}\right] \left[\frac{\partial w}{\partial x} - \frac{u}{R_{1}}\right] + \frac{\partial u}{\partial z}$$

$$\gamma_{yz} = \left[\frac{R_{2}}{R_{2}+z}\right] \left[\frac{\partial w}{\partial y} - \frac{v}{R_{2}}\right] + \frac{\partial v}{\partial z}. \quad (1)$$

In these equations, x, y and z are the Cartesian coordinates in which z is measured from the middle surface of the shell; u, v and w are the displacements in the x-, y- and zdirections;  $R_1$  and  $R_2$  are the middle surface radii of curvature (which are assumed to be constant);  $\varepsilon_x$ ,  $\varepsilon_y$  and  $\varepsilon_z$  are the normal strains in the x-, y- and z-directions; and  $\gamma_{xy}$ ,  $\gamma_{xz}$  and  $\gamma_{yz}$  are the shear strains. In order to reduce the system of equations with variable coefficients to those with constant coefficients, the following assumptions are made:

$$\left[\frac{R_1}{R_1+z}\right] \approx 1; \quad \left[\frac{R_2}{R_2+z}\right] \approx 1.$$
 (2)

For these assumptions to be true, it is essential that  $(h/R_1)$  and  $(h/R_2) \ll 1$ . Thus, eqns (2) can easily be satisfied if the shell is slightly curved or if the thickness of the shell is very small compared to the radii of curvatures. Thus in the case of thick shells, the thickness of the shell is to be divided into a number of layers with smaller thickness so that eqns (2) are satisfied. This will allow us to obtain the exact values for thick shells. Utilizing eqns (2) in eqns (1) the strain -displacement relations are rewritten as

$$\varepsilon_{x} = \frac{\partial u}{\partial x} + \frac{w}{R_{1}}; \quad \varepsilon_{y} = \frac{\partial v}{\partial y} + \frac{w}{R_{2}}; \quad \varepsilon_{z} = \frac{\partial w}{\partial z}$$
$$\gamma_{xy} = \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}; \quad \gamma_{xz} = \frac{\partial w}{\partial x} + \frac{\partial u}{\partial z} - \frac{u}{R_{1}}; \quad \gamma_{yz} = \frac{\partial w}{\partial y} + \frac{\partial v}{\partial z} - \frac{v}{R_{2}}.$$
(3)

The stress-strain relations for an orthotropic material read

$$\begin{bmatrix} \sigma_x \\ \sigma_y \\ \sigma_z \end{bmatrix} = \begin{bmatrix} C_{11} & C_{12} & C_{13} \\ C_{12} & C_{22} & C_{23} \\ C_{13} & C_{23} & C_{33} \end{bmatrix} \begin{bmatrix} \varepsilon_x \\ \varepsilon_y \\ \varepsilon_z \end{bmatrix}$$
(4a)

$$\tau_{xy} = C_{bb}\gamma_{xy}; \quad \tau_{xz} = C_{44}\gamma_{xz}; \quad \tau_{yz} = C_{55}\gamma_{yz}. \tag{4b}$$

Here,  $\sigma_x$ ,  $\sigma_y$  and  $\sigma_z$  are the normal stresses;  $\tau_{xy}$ ,  $\tau_{xz}$  and  $\tau_{yz}$  are the shear stresses; and  $C_{ij}$  are the elastic constants of the orthotropic material. Using eqn (2), the 3-D stress equilibrium equations (Saada, 1974) can be written as

$$\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} + \frac{\partial \tau_{xz}}{\partial z} + \left[\frac{2}{R_1} + \frac{1}{R_2}\right] \tau_{xz} = \rho \frac{\partial^2 u}{\partial t^2}$$
$$\frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \sigma_y}{\partial y} + \frac{\partial \tau_{yz}}{\partial z} + \left[\frac{1}{R_1} + \frac{2}{R_2}\right] \tau_{yz} = \rho \frac{\partial^2 v}{\partial t^2}$$
$$\frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \tau_{yz}}{\partial y} + \frac{\partial \sigma_z}{\partial z} + \left[\frac{1}{R_1} + \frac{1}{R_2}\right] \sigma_z - \frac{\sigma_x}{R_1} - \frac{\sigma_y}{R_2} = \rho \frac{\partial^2 w}{\partial t^2}.$$
(5)

In the above equations, t is the time coordinate and  $\rho$  is the density of the material per unit volume. Substituting the stress-strain relations (4), via the strain-displacement relations (3), the above stress equilibrium equations can be written in terms of three displacements as

$$C_{11}\frac{\partial^{2}u}{\partial x^{2}} + C_{66}\frac{\partial^{2}u}{\partial y^{2}} + C_{44}\frac{\partial^{2}u}{\partial z^{2}} + \left[\frac{C_{44}}{R_{1}} + \frac{C_{44}}{R_{2}}\right]\frac{\partial u}{\partial z} - \left[\frac{2}{R_{1}} + \frac{1}{R_{2}}\right]\frac{C_{44}}{R_{1}}u \\ + \left[C_{66} + C_{12}\right]\frac{\partial^{2}v}{\partial x \partial y} + \left[\frac{C_{11} + 2C_{44}}{R_{1}} + \frac{C_{12} + C_{44}}{R_{2}}\right]\frac{\partial w}{\partial x} + \left[C_{13} + C_{44}\right]\frac{\partial^{2}w}{\partial x \partial z} = \rho \frac{\partial^{2}u}{\partial t^{2}}.$$

$$C_{66}\frac{\partial^{2}v}{\partial x^{2}} + C_{22}\frac{\partial^{2}v}{\partial y^{2}} + C_{55}\frac{\partial^{2}v}{\partial z^{2}} + \left[\frac{C_{55}}{R_{1}} + \frac{C_{55}}{R_{2}}\right]\frac{\partial v}{\partial z} - \left[\frac{1}{R_{1}} + \frac{2}{R_{2}}\right]\frac{C_{55}}{R_{2}}v \\ + \left[C_{66} + C_{12}\right]\frac{\partial^{2}u}{\partial x \partial y} + \left[\frac{C_{22} + 2C_{55}}{R_{2}} + \frac{C_{12} + C_{55}}{R_{1}}\right]\frac{\partial w}{\partial y} + \left[C_{23} + C_{55}\right]\frac{\partial^{2}w}{\partial y \partial z} = \rho \frac{\partial^{2}v}{\partial t^{2}}.$$

$$\left[\frac{C_{13} - C_{11} - C_{44}}{R_{1}} + \frac{C_{13} - C_{12}}{R_{2}}\right]\frac{\partial u}{\partial x} + \left[C_{13} + C_{44}\right]\frac{\partial^{2}u}{\partial x \partial z} + \left[C_{23} + C_{55}\right]\frac{\partial^{2}w}{\partial y \partial z} \\ + \left[\frac{C_{23} - C_{22} - C_{55}}{R_{2}} + \frac{C_{23} - C_{12}}{R_{1}}\right]\frac{\partial v}{\partial y} + C_{44}\frac{\partial^{2}w}{\partial x^{2}} + C_{55}\frac{\partial^{2}w}{\partial y^{2}} + C_{33}\frac{\partial^{2}w}{\partial z^{2}} \\ + \left[\frac{1}{R_{1}} + \frac{1}{R_{2}}\right]C_{33}\frac{\partial w}{\partial z} + \left[\frac{C_{13} - C_{11}}{R_{1}^{2}} + \frac{C_{13} + C_{23} - 2C_{12}}{R_{1}^{2}} + \frac{C_{23} - C_{22}}{R_{1}^{2}}\right]w = \rho \frac{\partial^{2}w}{\partial t^{2}}.$$
(6)

The above equations are the required equilibrium equations and they are differential equations with constant coefficients. Had we not made use of the assumptions in eqns (2) the above equilibrium equations would have had coefficients involving the normal coordinate z, the solution of which would have caused a great deal of mathematical difficulties. In the next section, the solution of eqns (6) is sought using the method of separation of variables.

### SOLUTION OF THE 3-D EQUILIBRIUM EQUATIONS

The solution of the equilibrium eqns (6) is difficult to obtain for a given general boundary and surface conditions. However, all-round simply supported shells render the solution of these equations in terms of trigonometric functions possible. The following modal solution for displacements and stresses satisfies the simply supported boundary conditions:

| <i>u</i> =    | $U_{mn}\cos Mx\sin Ny\sin \Omega t$ ;   | $\sigma_x = S_{xmn} \sin Mx \sin Ny \sin \Omega t;$   |     |
|---------------|-----------------------------------------|-------------------------------------------------------|-----|
| <i>v</i> =    | $V_{mn}\sin Mx\cos Ny\sin \Omega t;$    | $\sigma_y = S_{ymn} \sin MX \sin Ny \sin \Omega t;$   |     |
| w =           | $W_{mn} \sin Mx \sin Ny \sin \Omega t;$ | $\sigma_z = S_{zmn} \sin Mx \sin Ny \sin \Omega t;$   |     |
| t.: =         | $T_{x;mn}\cos Mx\sin Ny\sin \Omega t;$  | $\tau_{yz} = T_{yzmn} \sin Mx \cos Ny \sin \Omega t;$ |     |
| $\tau_{xr} =$ | $T_{xymn}\cos Mx\cos Ny\sin\Omega t$ ,  |                                                       | (7) |

where

$$M = m\pi/a$$
 and  $N = n\pi/b$ .

Here, a and b are the dimensions of the shell in the x- and y-direction; m and n are the number of half-waves in the x- and y-direction; and  $\Omega$  is the radian frequency associated with the mode (m, n). In the above modal solution we note that  $U_{mn}$ ,  $V_{mn}$  and  $W_{mn}$  are functions of the normal coordinate z and are to be determined as the solution of the

following ODEs, which are obtained after substituting eqns (7) in eqns (6) as

$$L_{11}U_{mn} + L_{12}V_{mn} + L_{13}W_{mn} = 0$$
(8a)

$$L_{21}U_{mn} + L_{22}V_{mn} + L_{23}W_{mn} = 0$$
(8b)

$$L_{31}U_{mn} + L_{32}V_{mn} + L_{33}W_{mn} = 0;$$
 (8c)

where the differential operators  $L_{ij}$  are given by

$$L_{11} = a_1 \frac{d^2}{dz^2} + a_2 \frac{d}{dz} + a_3; \quad L_{12} = L_{21} = a_4$$

$$L_{13} = a_5 \frac{d}{dz} + a_6; \quad L_{22} = a_7 \frac{d^2}{dz^2} + a_8 \frac{d}{dz} + a_9$$

$$L_{23} = a_{10} \frac{d}{dz} + a_{11}; \quad L_{31} = a_{12} \frac{d}{dz} + a_{13}$$

$$L_{32} = a_{14} \frac{d}{dz} + a_{15}; \quad L_{33} = a_{16} \frac{d^2}{dz^2} + a_{17} \frac{d}{dz} + a_{18}; \quad (9)$$

 $a_1$ - $a_{18}$  appearing in eqns (9) have the following definitions:

$$a_{1} = C_{44}; \quad a_{2} = \left[\frac{1}{R_{1}} + \frac{1}{R_{2}}\right]C_{44}; \quad a_{3} = -\left[\frac{2}{R_{1}} + \frac{1}{R_{2}}\right]\frac{C_{44}}{R_{1}} - C_{11}M^{2} - C_{66}N^{2} + \rho\Omega^{2}$$

$$a_{4} = -\left[C_{12} + C_{66}\right]MN; \quad a_{5} = \left[C_{23} + C_{44}\right]M; \quad a_{6} = \left[\frac{C_{11} + 2C_{44}}{R_{1}} + \frac{C_{12} + C_{44}}{R_{2}}\right]M$$

$$a_{7} = C_{55}; \quad a_{8} = \left[\frac{1}{R_{1}} + \frac{1}{R_{2}}\right]C_{55}; \quad a_{9} = -\left[\frac{1}{R_{1}} + \frac{2}{R_{2}}\right]\frac{C_{55}}{R_{2}} - C_{66}M^{2} - C_{22}N^{2} + \rho\Omega^{2}$$

$$a_{10} = \left[C_{23} + C_{55}\right]N; \quad a_{11} = \left[\frac{C_{22} + 2C_{55}}{R_{2}} + \frac{C_{12} + C_{55}}{R_{1}}\right]N; \quad a_{12} = -\left[C_{13} + C_{44}\right]M$$

$$a_{13} = \left[\frac{C_{11} + C_{44} - C_{13}}{R_{1}} + \frac{C_{12} - C_{13}}{R_{2}}\right]M; \quad a_{14} = \left[C_{23} + C_{55}\right]N$$

$$a_{15} = \left[\frac{C_{22} + C_{55} - C_{23}}{R_{2}} + \frac{C_{12} - C_{23}}{R_{1}}\right]N; \quad a_{16} = C_{33}; \quad a_{17} = \left[\frac{1}{R_{1}} + \frac{1}{R_{2}}\right]C_{33}$$

$$a_{18} = \left[\frac{C_{13} - C_{11}}{R_{1}^{2}} + \frac{C_{13} + C_{23} - 2C_{12}}{R_{1}R_{2}} + \frac{C_{23} - C_{22}}{R_{2}^{2}}\right] - C_{44}M^{2} - C_{55}N^{2} + \rho\Omega^{2}.$$
(10)

The solution of eqns (8) are obtained by expressing  $U_{mn}$ ,  $V_{mn}$  and  $W_{mn}$  in terms of a displacement potential function  $\phi_{mn}$  as follows:

$$U_{mn} = (L_{12}L_{23} - L_{13}L_{22})\phi_{mn}; \quad V_{mn} = (L_{13}L_{21} - L_{23}L_{11})\phi_{mn}$$
$$W_{mn} = (L_{11}L_{22} - L_{12}L_{21})\phi_{mn}. \tag{11}$$

Substituting the above solution in eqns (8), it can be seen that eqns (8a) and (8b) are satisfied identically and eqn (8c) reduces to the following governing equation in  $\phi_{mn}$ :

$$c_1 \frac{d^6 \phi}{dz^6} + c_2 \frac{d^5 \phi}{dz^3} + c_3 \frac{d^4 \phi}{dz^4} + c_4 \frac{d^3 \phi}{dz^3} + c_5 \frac{d^2 \phi}{dz^2} + c_6 \frac{d \phi}{dz} + c_7 \phi = 0.$$
(12)

In the above equation and in the subsequent analysis, subscripts "mn" have been dropped for the sake of simplicity and the expressions for  $c_1-c_7$  are given in the Appendix. Since eqn (12) is of the order six, the solution  $\phi$  involves six arbitrary constants and is sought in the form :

$$\phi = e^{zz} \tag{13}$$

and six  $\alpha$ s are obtained as the roots of the following equation :

$$c_1\alpha^6 + c_2\alpha^5 + c_3\alpha^4 + c_4\alpha^3 + c_5\alpha^2 + c_6\alpha + c_7 = 0.$$
 (14)

The exact expression for  $\phi$  depends on the nature of the roots of eqn (14), for example, for six real and distinct roots we can write

$$\phi = A_1 e^{a_1 z} + A_2 e^{a_2 z} + A_3 e^{a_3 z} + A_4 e^{a_4 z} + A_5 e^{a_3 z} + A_6 e^{a_6 z}, \qquad (15a)$$

or in the matrix notation as

$$\boldsymbol{\phi} = \mathbf{F}\boldsymbol{\delta}; \tag{15b}$$

here  $\delta^t = \{A_1, A_2, A_3, A_4, A_5, A_6\}$  is a column vector of six constants and  $\mathbf{F} = \{F_1, F_2, F_3, F_4, F_5, F_6\}$  is a row vector in which  $F_1 - F_6$  are the coefficients of  $A_1 - A_6$ , and are functions of the normal coordinate z. Here,  $A_1 - A_6$  are the six arbitrary constants to be determined using the following six traction-free surface conditions

$$\tau_{xz} = 0; \quad \tau_{yz} = 0; \quad \sigma_z = 0 \quad (\text{at } z = +h/2)$$
  
$$\tau_{xz} = 0; \quad \tau_{yz} = 0; \quad \sigma_z = 0 \quad (\text{at } z = -h/2). \quad (16)$$

Once  $\phi$  is obtained from eqn (15) the displacements U, V and W can be computed using eqns (11); strains can be computed from eqns (3); and the stresses from eqns (4) as

$$\begin{bmatrix} U \\ V \\ T_{xy} \end{bmatrix} = \begin{bmatrix} b_1 & b_2 & b_3 & b_4 \\ b_5 & b_6 & b_7 & b_8 \\ b_9 & b_{10} & b_{11} & b_{12} \end{bmatrix} \begin{bmatrix} \phi^{11} \\ \phi^{1} \\ \phi^{1} \\ \phi \end{bmatrix}$$
(17a)

$$\begin{bmatrix} W \\ T_{xz} \\ T_{yz} \end{bmatrix} = \begin{bmatrix} b_{13} & b_{14} & b_{15} & b_{16} & b_{17} \\ b_{18} & b_{19} & b_{20} & b_{21} & b_{22} \\ b_{23} & b_{24} & b_{25} & b_{26} & b_{27} \end{bmatrix} \begin{bmatrix} \sigma^{\text{IV}} \\ \phi^{\text{III}} \\ \sigma^{\text{II}} \\ \phi^{\text{I}} \\ \phi \end{bmatrix}$$
(17b)

$$\begin{bmatrix} S_x \\ S_y \\ S_z \end{bmatrix} = \begin{bmatrix} b_{28} & b_{29} & b_{30} & b_{31} & b_{32} & b_{33} \\ b_{34} & b_{35} & b_{36} & b_{37} & b_{38} & b_{39} \\ b_{40} & b_{41} & b_{42} & b_{43} & b_{44} & b_{45} \end{bmatrix} \begin{bmatrix} \phi^{V} \\ \phi^{IV} \\ \phi^{III} \\ \phi^{II} \\ \phi^{I} \\ \phi \end{bmatrix}.$$
 (17c)

In the above, "I" indicates differentiation with respect to z and the expressions for  $b_1-b_{45}$  are given in the Appendix. Thus knowing the complete variation of the stresses and displacements in the z-direction, the frequency determinant can be set up by using the six.

traction-free surface conditions (16) as

$$\begin{bmatrix} {}^{+}\mathbf{D}_{\sigma} \\ {}^{-}\mathbf{D}_{\sigma} \end{bmatrix} \boldsymbol{\delta} = \mathbf{D}\boldsymbol{\delta} = \mathbf{0}, \tag{18}$$

where  ${}^{+}D_{\sigma}$  and  ${}^{-}D_{\sigma}$  are (3 × 6) matrices defined as follows:

$${}^{+}\mathbf{D}_{\sigma} = \begin{bmatrix} b_{40} & b_{41} & b_{42} & b_{43} & b_{44} & b_{45} \\ 0 & b_{18} & b_{19} & b_{20} & b_{21} & b_{22} \\ 0 & b_{23} & b_{24} & b_{25} & b_{26} & b_{27} \end{bmatrix} \begin{bmatrix} \mathbf{F}^{\mathsf{v}} \\ \mathbf{F}^{\mathsf{lu}} \\ \mathbf{F}^{\mathsf{lu}} \\ \mathbf{F}^{\mathsf{l}} \\ \mathbf{F}^{\mathsf{l}} \\ \mathbf{F}^{\mathsf{l}} \end{bmatrix}_{\mathfrak{al} \mathfrak{c} = h/2} .$$
(19a)

Also, we define the following matrix which will be useful in the analysis of laminated and sandwich-type shells

$$^{+}\mathbf{D}_{u} = \begin{bmatrix} b_{13} & b_{14} & b_{15} & b_{16} & b_{17} \\ 0 & b_{1} & b_{2} & b_{3} & b_{4} \\ 0 & b_{5} & b_{6} & b_{7} & b_{8} \end{bmatrix} \begin{bmatrix} \mathbf{F}^{11} \\ \mathbf{F}^{11} \\ \mathbf{F}^{1} \\ \mathbf{F}^{1} \\ \mathbf{F}^{1} \\ \mathbf{F}^{1} \end{bmatrix}_{\mathbf{a} \mathbf{t} \mathbf{z} - \hbar/2}$$
(19b)

....

Similarly,  $^{-}D_{\alpha}$  and  $^{-}D_{u}$  can be obtained by evaluating F, F<sup>1</sup>, etc. at z = -h/2, in eqns (19). It is to be noted here that the frequency ( $\Omega$ ) appears implicitly in the expressions of the coefficients of D and is to be determined by equating the determinant of D to zero. This completes the formulation of the problem and its solution for a shell with given geometric and material parameters ( $R_1$ ,  $R_2$ , a, b, h and  $C_{ij}$ ). It should be pointed out here that the above procedure holds for a single layered shell and in the case of laminated and sandwich shells, there are six arbitrary constants for each layer. The frequency determinant is to be set up by using the interface stress and displacement continuity conditions, in addition to the known traction-free surface conditions. For layers *i* and *i*+1 the interface conditions are :

$$\begin{bmatrix} U \\ z = -\frac{h}{2} \end{bmatrix}^{(0)} = \begin{bmatrix} U \\ z = +\frac{h}{2} \end{bmatrix}^{(l+1)}; \begin{bmatrix} V \\ z = -\frac{h}{2} \end{bmatrix}^{(0)} = \begin{bmatrix} V \\ z = +\frac{h}{2} \end{bmatrix}^{(l+1)}; \begin{bmatrix} T_{xz} \\ z = -\frac{h}{2} \end{bmatrix}^{(0)} = \begin{bmatrix} W \\ z = +\frac{h}{2} \end{bmatrix}^{(l+1)}; \begin{bmatrix} T_{xz} \\ z = -\frac{h}{2} \end{bmatrix}^{(0)} = \begin{bmatrix} T_{xz} \\ z = +\frac{h}{2} \end{bmatrix}^{(l+1)}; \begin{bmatrix} T_{xz} \\ z = -\frac{h}{2} \end{bmatrix}^{(0)} = \begin{bmatrix} T_{yz} \\ z = +\frac{h}{2} \end{bmatrix}^{(l+1)}; \begin{bmatrix} S_{z} \\ z = -\frac{h}{2} \end{bmatrix}^{(0)} = \begin{bmatrix} S_{z} \\ z = +\frac{h}{2} \end{bmatrix}^{(l+1)}; \begin{bmatrix} S_{z} \\ z = -\frac{h}{2} \end{bmatrix}^{(0)} = \begin{bmatrix} S_{z} \\ z = +\frac{h}{2} \end{bmatrix}^{(l+1)}; \begin{bmatrix} S_{z} \\ z = -\frac{h}{2} \end{bmatrix}^{(0)} = \begin{bmatrix} S_{z} \\ z = +\frac{h}{2} \end{bmatrix}^{(l+1)}; \begin{bmatrix} S_{z} \\ z = -\frac{h}{2} \end{bmatrix}^{(0)} = \begin{bmatrix} S_{z} \\ z = +\frac{h}{2} \end{bmatrix}^{(l+1)}; \begin{bmatrix} S_{z} \\ z = -\frac{h}{2} \end{bmatrix}^{(0)} = \begin{bmatrix} S_{z} \\ z = +\frac{h}{2} \end{bmatrix}^{(l+1)}; \begin{bmatrix} S_{z} \\ z = -\frac{h}{2} \end{bmatrix}^{(0)} = \begin{bmatrix} S_{z} \\ z = +\frac{h}{2} \end{bmatrix}^{(l+1)}; \begin{bmatrix} S_{z} \\ z = -\frac{h}{2} \end{bmatrix}^{(0)} = \begin{bmatrix} S_{z} \\ z = +\frac{h}{2} \end{bmatrix}^{(l+1)}; \begin{bmatrix} S_{z} \\ z = -\frac{h}{2} \end{bmatrix}^{(l+1)}; \begin{bmatrix} S_{z} \\ z = -\frac{h}{2} \end{bmatrix}^{(l+1)}; \begin{bmatrix} S_{z} \\ z = +\frac{h}{2} \end{bmatrix}^{(l+1)}; \begin{bmatrix} S_{z} \\ z = -\frac{h}{2} \end{bmatrix}^{(l+1)}; \begin{bmatrix} S_{z} \\ z = +\frac{h}{2} \end{bmatrix}^{(l+1)}; \begin{bmatrix} S_{z} \\ z = -\frac{h}{2} \end{bmatrix}^{(l+1)}; \begin{bmatrix} S_{z} \\ z = -\frac{h}{2} \end{bmatrix}^{(l+1)}; \begin{bmatrix} S_{z} \\ z = +\frac{h}{2} \end{bmatrix}^{(l+1)}; \begin{bmatrix} S_{z} \\ z = -\frac{h}{2} \end{bmatrix}^{(l+1)}; \begin{bmatrix} S_{z} \\ z = +\frac{h}{2} \end{bmatrix}^{(l+1)}; \begin{bmatrix} S_{z} \\ z = -\frac{h}{2} \end{bmatrix}^{(l+1)}; \begin{bmatrix} S_{z} \\ z = -\frac{h}{2} \end{bmatrix}^{(l+1)}; \begin{bmatrix} S_{z} \\ z = +\frac{h}{2} \end{bmatrix}^{(l+1)}; \begin{bmatrix} S_{z} \\ z = -\frac{h}{2} \end{bmatrix}^{(l+1)}; \begin{bmatrix} S_{z} \\ z = +\frac{h}{2} \end{bmatrix}^{(l+1)}; \begin{bmatrix} S_{z} \\ z = -\frac{h}{2} \end{bmatrix}^{(l+1)$$

or in the matrix notation

$${}^{-}\mathbf{D}_{\sigma}^{(i)}\boldsymbol{\delta}^{(i)} = {}^{+}\mathbf{D}_{\sigma}^{(i+1)}\boldsymbol{\delta}^{(i+1)} \text{ and } {}^{-}\mathbf{D}_{u}^{(i)}\boldsymbol{\delta}^{(i)} = {}^{+}\mathbf{D}_{u}^{(i+1)}\boldsymbol{\delta}^{(i+1)}.$$
(20b)

For example, if the shell is made up of two layers there will be 12 constants  $(A_1 - A_{12}, six for each layer)$ , to be determined using the six surface traction conditions [see eqns (16)] and six interface (three transverse stresses and three displacements) continuity conditions [see eqns (20)], which results in 12 homogeneous algebraic equations as

$$\begin{bmatrix} {}^{+}\mathbf{D}_{\sigma}^{(1)} & \mathbf{0} \\ {}^{-}\mathbf{D}_{\sigma}^{(1)} & {}^{+}\mathbf{D}_{\sigma}^{(2)} \\ {}^{-}\mathbf{D}_{u}^{(1)} & {}^{-}\mathbf{D}_{u}^{(2)} \\ \mathbf{0} & {}^{-}\mathbf{D}_{u}^{(2)} \end{bmatrix} \begin{bmatrix} \boldsymbol{\delta}^{(1)} \\ \boldsymbol{\delta}^{(2)} \end{bmatrix} = \mathbf{D}\boldsymbol{\delta} = \mathbf{0}.$$
 (21)

It is to be noted here that when the ratios  $h/R_1$  and  $h/R_2$  are not small enough to be considered as  $\ll 1$ , the thickness of the shell is divided into a number of layers with smaller thickness values so that for any layer, the values of the ratios  $h/R_1$  and  $h/R_2$  become  $\ll 1$ ; and the solution is obtained by using the interface stress and displacement continuity conditions (20) and the surface traction conditions (16). For laminated shells and sandwichtype shells for which  $h/R_1$  and  $h/R_2$  are not too small, each layer shall be divided into sublayers with sufficiently smaller  $h/R_1$  and  $h/R_2$  ratios. However, a proper value for  $h/R_1$ and  $h/R_2$  can be chosen by conducting some numerical experiments and observing the convergence of the frequency values.

Furthermore, it is to be noted here that the corresponding equations for rectangular plates can be deduced from the present analysis by using  $1/R_1 = 1/R_2 = 0$ , and those for cylindrical shells by using  $1/R_1 = 0$  and  $R_2 = R$ . Thus, the present procedure and the corresponding computer coding has been checked by computing the results for isotropic and orthotropic plates (Srinivas and Rao, 1970). Also, we note that the approximations made in eqns (2) hold true for rectangular plates and hence exact results can be obtained without subdividing the thickness of the plate. Since it is intended to compare the 2-D shell theories with the present exact 3-D analysis, a brief discussion of the 2-D theories has been included here for the sake of continuity and completeness.

### TWO-DIMENSIONAL DOUBLE CURVED SHALLOW SHELL THEORY

The 2-D shell theories may be classified into three categories: the Thin Shell Theories (TST), the Shear Deformation Theories, and the Higher-Order Theories. The discussion of these various theories may be found in the publications by Bhimaraddi (1987) and Stein (1986). Here we discuss briefly the parabollic shear deformation theory (Bhimaraddi; 1984, 1987) in the present context of the doubly curved shells. In this theory, the displacements are expressed as

$$u = u_0 + fu_1 - z \frac{\partial w_0}{\partial x}; \quad v = v_0 + fv_1 - z \frac{\partial w_0}{\partial y}; \quad w = w_0$$
(22)

where f and its first derivative ( $f^*$ ) are functions of z only and are given as

$$f = z \left[ 1 - \frac{4z^2}{3h^2} \right]; \quad f^* = \frac{df}{dz} = \left[ 1 - \frac{4z^2}{h^2} \right]. \tag{23}$$

In these equations  $u_0$ ,  $v_0$  and  $w_0$  are the translations of a point on the shell middle surface; and  $u_1$  and  $v_1$  are the rotations of a point on the middle surface in addition to the usual flexural rotations  $\partial w_0 / \partial x$  and  $\partial w_0 / \partial y$ . All the middle surface displacement parameters (viz.  $u_0$ ,  $v_0$ ,  $w_0$ ,  $u_1$ ,  $v_1$ ) are functions of (x, y) only, and are independent of the z coordinate. The strains are written as

$$\varepsilon_{x} = \frac{\partial u_{0}}{\partial x} + f \frac{\partial u_{1}}{\partial x} - z \frac{\partial^{2} w_{0}}{\partial x^{2}} + \frac{w_{0}}{R_{1}}; \quad \varepsilon_{y} = \frac{\partial v_{0}}{\partial y} + f \frac{\partial v_{1}}{\partial y} - z \frac{\partial^{2} w_{0}}{\partial y^{2}} + \frac{w_{0}}{R_{2}}$$

$$\varepsilon_{z} = 0; \quad \gamma_{xz} = f^{*} u_{1}; \quad \gamma_{yz} = f^{*} v_{1}; \quad \gamma_{xy} = \frac{\partial v_{0}}{\partial x} + \frac{\partial u_{0}}{\partial y} + f \frac{\partial u_{1}}{\partial y} + f \frac{\partial v_{1}}{\partial x} - 2z \frac{\partial^{2} w_{0}}{\partial x \partial y}. \quad (24)$$

It may be observed that the transverse shear strains vanish on the top (z = h/2) and bottom (z = -h/2) surfaces of the shell and they vary parabolically across the thickness. It is to be noted here that the displacements corresponding to the Mindlin-type (in which the transverse shear strains are constant across the thickness) Constant Shear Deformation (CSD) theory, can be obtained if one uses f = z and also the classical Thin Shell Theory can be deduced if one uses f = 0 in the above equations. In the case of CSD, the shear correction factor is to be used to correct the deficiencies in that theory (non-parabolic variation of shear stresses and non-vanishing of the shear stresses at the top and bottom surfaces of the shell). Further development of the theory follows a standard routine which can be obtained in Bhimaraddi (1984, 1987) and will not be repeated here for the sake of brevity.

# DISCUSSION OF NUMERICAL RESULTS

It is to be said here that the present elasticity analysis yields an infinite number of frequencies for each combination of (m, n) values, whereas, the PSD and CSD yield five frequencies and TST yields three frequencies. Of these frequencies, the lowest frequency corresponds to the flexural mode of vibration and only this frequency has been computed and discussed in this study. In the numerical computations of CSD, the shear correction factor used corresponds to  $\pi^2/12$ . Since this is the first time that the analysis for shallow (on rectangular planform) cylindrical shells and spherical shells has been given using the 3-D equations, all the numerical results have been given in a tabular form which are intended to serve as bench-mark values for future studies. The typical orthotropic material properties correspond to :

$$\frac{E_x}{E_y} = 25; \quad \frac{E_z}{E_y} = 1; \quad \frac{G_{xz}}{E_y} = \frac{G_{xy}}{E_y} = \frac{1}{2}; \quad \frac{G_{yz}}{E_y} = \frac{1}{5}; \quad \mu_{xy} = 0.25; \quad \mu_{zx} = 0.03; \quad \mu_{yz} = 0.4.$$

Here  $E_x$ ,  $E_y$  and  $E_z$  are the Young's moduli;  $G_{xy}$ ,  $G_{xz}$  and  $G_{yz}$  are the shear moduli; and  $\mu_{xy}$ ,  $\mu_{zx}$  and  $\mu_{yz}$  are the Poisson ratios. As noted earlier in the case of thick shells for which the assumptions in eqns (2) are not valid, the shell thickness has to be divided into a number of layers such that for each layer, eqns (2) hold true. A proper value for h/R can be fixed by conducting some numerical experiments in which the convergence of the frequency can be observed.

Tables 1, 2 and 3 show the convergence studies for homogeneous spherical shells on rectangular planform with different h/a and R/a ratios (Table 1), and with different wave numbers (Table 2), and with different aspect ratios (Table 3). It may be observed from these tables that as the number of divisions in the shell thickness increases, the frequency values converge monotonically from above. This pattern of convergence is completely in agreement with Rayleigh's principle and this also validates the present approach. Furthermore, this suggests that the frequencies from the present analysis (without dividing the shell thickness) are the upper bounds to the exact values. It may be seen from Table 1 that as h/a ratio of the shell increases and as R/a ratio decreases, one has to divide the thickness of the shell into a greater number of layers to achieve the convergence of the results. For a

Table 1. Convergence studies on an orthotropic spherical shell frequency  $(\bar{\Omega})$  with different b/aand R/a ratios  $(\bar{\Omega} = \Omega a \sqrt{\rho/E_v}; a/b = 1)$   $(E_v = 25E_v; G_{vz} = G_{vv} = \frac{1}{2}E_v; G_{vz} = \frac{1}{2}E_v; \mu_{vv} = \frac{1}{4};$  $\mu_{zv} = 0.03; \mu_{vz} = 0.4$ 

|                  | m=n=1,  a/b=1, |           | R/a = 1  | m = n = | 1, a/b = 1, | h/a = 0.1 |
|------------------|----------------|-----------|----------|---------|-------------|-----------|
| N <sub>d</sub> † | h/a = 0.05     | h/a = 0.1 | h/a=0.15 | R/a = 3 | R/a = 5     | R/a = 10  |
| 1                | 1.24313        | 1.50152   | 1.70293  | 1.27975 | 1.25902     | 1.25011   |
| 2                | 1.22140        | 1.44837   | 1.63018  | 1.27070 | 1.25565     | 1.24926   |
| 5                | 1.21511        | 1.43177   | 1.60515  | 1.26799 | 1.25464     | 1.24900   |
| 10               | 1.21421        | 1.42933   | 1.60137  | 1.26760 | 1.25450     | 1.24896   |
| 15               | 1.21404        | 1.42888   | 1.60066  | 1.26753 | 1.25447     | 1.24896   |
| 20               | 1.21403        | 1.42872   | 1.60041  | 1.26750 | 1.25446     | 1.24896   |

+ Number of divisions in the shell thickness.

Table 2. Convergence studies on an orthotropic spherical shell frequency ( $\Omega$ ) with different mode numbers (m = n) ( $\Omega = \Omega a \sqrt{\rho/E_v}$ ; a/b = 1; R/a = 1; h/a = 0.1) ( $E_x = 25E_v$ ;  $G_{xz} = G_{xy} = \frac{1}{2}E_y$ ;  $G_{yz} = \frac{1}{2}E_y$ ;  $\mu_{xy} = \frac{1}{4}$ ;  $\mu_{zx} = 0.03$ ;  $\mu_{yz} = 0.4$ )

| Nd | m = n = 2 | m = n = 3 | m = n = 4 | m = n = 5 | m = n = 6 | m = n = 7 |
|----|-----------|-----------|-----------|-----------|-----------|-----------|
| 1  | 3.61086   | 6.09921   | 8.66825   | 11.27115  | 13.89055  | 16.51733  |
| 2  | 3.55698   | 6.05942   | 8.63790   | 11.24693  | 13.87052  | 16.50033  |
| 5  | 3.53794   | 6.04322   | 8.62408   | 11.23496  | 13.86002  | 16.49099  |
| 10 | 3.53503   | 6.04059   | 8.62166   | 11.23269  | 13.85787  | 16.48895  |
| 15 | 3.53449   | 6.04009   | 8.62119   | 11.23225  | 13.85744  | 16.48853  |
| 20 | 3.53429   | 6.03992   | 8.62103   | 11.23209  | 13.85729  | 16.48838  |

Table 3. Convergence studies on an orthotropic translational shell frequency  $(\bar{\Omega})$  with different aspect (a/b) ratios  $(\bar{\Omega} = \Omega a \sqrt{\rho/E_v}; m = n = 1; R/a = 1; h/a = 0.1)$   $(E_v = 25E_v; G_{vz} = G_{vz} = \frac{1}{2}E_v; G_{vz} = \frac{1}{2}E_v; \mu_{vy} = \frac{1}{4}; \mu_{zx} = 0.03; \mu_{vz} = 0.4)$ 

|      |           | -16 - 3     |           | -16 - 2 | -11. 28   |         |
|------|-----------|-------------|-----------|---------|-----------|---------|
| IN d | a/o = 1.5 | $a_i o = 2$ | a/0 = 2.5 | a/b = 3 | a/b = 3.3 | a/b = 3 |
| l    | 1.76559   | 2.13501     | 2.59033   | 3.11262 | 3.68538   | 5.58788 |
| 2    | 1.71716   | 2.09170     | 2.55159   | 3.07769 | 3.65358   | 5.56270 |
| 5    | 1.70218   | 2.07842     | 2.53980   | 3.06709 | 3.64392   | 5.55487 |
| 10   | 1.69998   | 2.07648     | 2.53808   | 3.06555 | 3.64252   | 5.55374 |
| 15   | 1.69957   | 2.07612     | 2.53776   | 3.06526 | 3.64225   | 5.55353 |
| 20   | 1.69943   | 2.07600     | 2.53765   | 3.06516 | 3.64216   | 5.55345 |

Table 4. Comparison of fundamental frequencies  $(\bar{\Omega})$  for orthotropic homogeneous and two-layered (0/90) cylindrical shells for different R/a and h/a ratios  $(a/b = 1, 1/R_1 = 0, \bar{\Omega} = \Omega a \sqrt{\rho/E_r})$ 

|     |     | Homogeneous cylinder |         | 0/90 Cylinder |            |           |            |
|-----|-----|----------------------|---------|---------------|------------|-----------|------------|
| R/a |     | h/a = 0.05           | h/a=0.1 | h/a = 0.15    | h/a = 0.05 | h/a = 0.1 | h/a = 0.15 |
| ł   | 3-D | 0.89171              | 1.32416 | 1.61690       | 0.78683    | 1.04085   | 1.29099    |
|     | PSD | 0.89791              | 1.33745 | 1.63718       | 0.79993    | 1.09189   | 1.38174    |
|     | CSD | 0.89124              | 1.29858 | 1.55779       | 0.79798    | 1.07475   | 1.33274    |
|     | TST | 0.93015              | 1.57257 | 2.23906       | 0.80580    | 1.14313   | 1.54124    |
| 2   | 3-D | 0.76632              | 1.26744 | 1.59247       | 0.57252    | 0.93627   | 1.25377    |
|     | PSD | 0.76857              | 1.27076 | 1.59664       | 0.58000    | 0.95664   | 1.28933    |
|     | CSD | 0.76045              | 1.22790 | 1.51092       | 0.57733    | 0.93653   | 1.23527    |
|     | TST | 0.80747              | 1.52693 | 2.24197       | 0.58723    | 1.01398   | 1.45781    |
| 3   | 3-D | 0.73968              | 1.25625 | 1.58789       | 0.52073    | 0.91442   | 1.24500    |
|     | PSD | 0.74095              | 1.25736 | 1.58856       | 0.52516    | 0.92642   | 1.90563    |
|     | CSD | 0.73246              | 1.21368 | 1.50158       | 0.52222    | 0.90563   | 1.21316    |
|     | TST | 0.78151              | 1.51784 | 2.24256       | 0.53294    | 0.98505   | 1.43751    |
| 4   | 3-D | 0.73004              | 1.25227 | 1.58529       | 0.50110    | 0.90613   | 1.24090    |
|     | PSD | 0.73094              | 1.25259 | 1.58569       | 0.50415    | 0.91506   | 1.25977    |
|     | CSD | 0.72231              | 1.20860 | 1.49826       | 0.50109    | 0.89403   | 1.20454    |
|     | TST | 0.77213              | 1.51461 | 2.24277       | 0.51217    | 0.97408   | 1.42910    |
| 5   | 3-D | 0.72552              | 1.25033 | 1,58424       | 0.49167    | 0.90200   | 1.23849    |
|     | PSD | 0.72625              | 1.25036 | 1,58436       | 0.49402    | 0.90953   | 1.25551    |
|     | CSD | 0.71755              | 1.20624 | 1,49671       | 0.49091    | 0.88840   | 1.20020    |
|     | TST | 0.76773              | 1.51310 | 2,24286       | 0.50216    | 0.96870   | 1.42464    |
| 10  | 3-D | 0.71944              | 1.24735 | 1.58254       | 0.47859    | 0.89564   | 1.23374    |
|     | PSD | 0.71992              | 1.24738 | 1.58257       | 0.47997    | 0.90150   | 1.24875    |
|     | CSD | 0.71114              | 1.20307 | 1.49464       | 0.47677    | 0.88026   | 1.19342    |
|     | TST | 0.76182              | 1.51108 | 2.24299       | 0.48827    | 0.96074   | 1.41709    |
| 20  | 3-D | 0.71791              | 1.24633 | 1.58210       | 0.47509    | 0.89341   | 1.23140    |
|     | PSD | 0.71833              | 1.24663 | 1.58212       | 0.47625    | 0.89904   | 1.24626    |
|     | CSD | 0.70952              | 1.20227 | 1.49412       | 0.47304    | 0.87779   | 1.19100    |
|     | TST | 0.76033              | 1.51058 | 2.24303       | 0.48459    | 0.95819   | 1.41400    |
| œ   | 3-D | 0.71739              | 1.24612 | 1.58121       | 0.47365    | 0.89179   | 1.22905    |
|     | PSD | 0.71780              | 1.24638 | 1.58197       | 0.47483    | 0.89761   | 1.24437    |
|     | CSD | 0.70898              | 1.20201 | 1.49394       | 0.47161    | 0.87640   | 1.18923    |
|     | TST | 0.75983              | 1.51041 | 2.24304       | 0.48317    | 0.95661   | 1.41139    |

3-D-Present 3-D analysis; PSD-Parabolic Shear Deformation theory; CSD-Constant Shear Deformation theory; TST-Thin Shell Theory.

.

shell with h/R = 0.01 (h/a = 0.1 and R/a = 10), almost exact results are obtained with  $N_d = 1$  as may be inferred from this table. From Tables 2 and 3 one may observe that a greater number of divisions have to be made in the shell thickness for lower modes and lower aspect ratios to achieve the required convergence. Thus one can conclude that if the h/R ratio of the shell is  $\leq 0.01$ , no division of the thickness of the shell is required. It may also be noted that for layered shells with  $h/R \leq 0.01$  at its middle surface, no sub-division of each layer is necessary. Thus all the numerical results presented in this paper have been obtained by keeping the h/R ratio of < 0.01 for any sub-layer.

Tables 4-6 depict frequency values for homogeneous and two-layered cylindrical shells with different h/a, R/a and (m, n) values, and those for spherical shells are shown in Tables 7-9. One may observe from these tables that, in most cases, the frequency values for homogeneous shells are higher as compared to those of the two-layered (0/90) shells. But for higher modes, two-layered shells give higher frequencies than the homogeneous shells. It may be seen from these tables that PSD and TST predict consistently higher frequency values when compared with the 3-D analysis, whereas CSD predicts lower values in most cases but for some (R/a = 1) two-layered shells, it predicts higher values.

From Tables 4 and 7 it may be said here that the errors in the 2-D theories increase with increasing shell thickness. The errors in PSD and CSD are negligible for cylindrical shells with h/a = 0.05 whereas, even for such a thin cylindrical shell the error in TST is about 4.3% for homogeneous (R/a = 1) shells, and this error increases to 6% for homogeneous plates. Also, it may be said here that the errors in the 2-D theories are higher for spherical shells as compared to those for cylindrical shells. For thick shells, the frequency values from TST are in greater discrepancy when compared with the 3-D analysis, and

| n |     | <i>m</i> = 1 | <i>m</i> = 2 | <i>m</i> = 3 | <i>m</i> = 4 | <i>m</i> = 5 | m = 6    |
|---|-----|--------------|--------------|--------------|--------------|--------------|----------|
| ı | 3-D | 1.32416      | 3.42856      | 5.65598      | 7.88524      | 10.10983     | 12.31165 |
|   | PSD | 1.33745      | 3.43487      | 5.68570      | 8.00360      | 10.41998     | 12.96862 |
|   | CSD | 1.29858      | 3.19538      | 5.13383      | 7.03869      | 8.91857      | 10.78286 |
|   | TST | 1.57257      | 5.26048      | 7,34788      | 9.41284      | 11.53382     | 13.68637 |
| 2 | 3-D | 1.65929      | 3.59532      | 5.77045      | 7.09557      | 10.18638     | 12.39924 |
|   | PSD | 1.69031      | 3.60790      | 5.80137      | 8.09173      | 10.49072     | 13.02658 |
|   | CSD | 1.63768      | 3.36074      | 5.24850      | 7.13296      | 9.00273      | 10.86098 |
|   | TST | 1.99961      | 5.85093      | 9.08880      | 10.84096     | 12.72805     | 14.70735 |
| 3 | 3-D | 2.50573      | 4.08989      | 6.10449      | 8.22842      | 10.38124     | 12.57257 |
|   | PSD | 2.53918      | 4.10523      | 6.13436      | 8.34022      | 10.68794     | 13.18882 |
|   | CSD | 2.44409      | 3.83876      | 5.57354      | 7.38087      | 9.20609      | 11.03596 |
|   | TST | 3.09808      | 6.45360      | 11.36729     | 12.87246     | 14.50117     | 16.26705 |
| 4 | 3-D | 3.64582      | 4.89994      | 6.68608      | 8.67551      | 10.75359     | 12.87744 |
|   | PSD | 3.67091      | 4.91181      | 6.71169      | 8.78055      | 11.04046     | 13.48058 |
|   | CSD | 3.49515      | 4.59461      | 6.12261      | 7.80606      | 9.55271      | 11.32941 |
|   | TST | 4.77389      | 7.53134      | 13.18665     | 15.26604     | 16.66900     | 18.22746 |
| 5 | 3-D | 4.92951      | 5.93701      | 7.48804      | 9.31267      | 11.27750     | 13.32086 |
|   | PSD | 4.94282      | 5.94121      | 7.50705      | 9.40951      | 11.55338     | 13.90986 |
|   | CSD | 4.65406      | 5.53630      | 6.85888      | 8.39601      | 10.04962     | 11.74416 |
|   | TST | 6.89750      | 9.13471      | 14.23784     | 17.87185     | 19.09700     | 20.47352 |
| 6 | 3-D | 6.28273      | 7.11414      | 8.45781      | 10.11238     | 11.94887     | 13.89574 |
|   | PSD | 6.28481      | 7.11024      | 8.47035      | 10.20163     | 12.21433     | 14.47086 |
|   | CSD | 5.85751      | 6.58546      | 7.73038      | 9.12068      | 10.65287     | 12.27984 |
|   | TST | 9.36898      | 11.20323     | 15.62888     | 20.59374     | 21.59722     | 22.92106 |
| 7 | 3-D | 7.66909      | 8.37330      | 9.54541      | 11.04051     | 12.74557     | 14.58772 |
|   | PSD | 7.66367      | 8.36430      | 9.55452      | 11.12540     | 13.00356     | 15.15128 |
|   | CSD | 7.07696      | 7.69351      | 8.69288      | 9.84800      | 11.36766     | 12.89485 |
|   | TST | 12.10934     | 13.64076     | 17.42526     | 23.26989     | 24.41370     | 25.51177 |
| 8 | 3-D | 9.07057      | 9.68036      | 10.03301     | 12.06614     | 13.64472     | 15.38031 |
|   | PSD | 9.06401      | 9.67213      | 10.72479     | 12.15254     | 13.90077     | 15.93704 |
|   | CSD | 8.29955      | 8.83331      | 9.71513      | 10.85103     | 12.16411     | 13.60064 |
|   | TST | 15.05423     | 16.35665     | 19.58430     | 25.20054     | 27.21024     | 28.20581 |

Table 5. Comparison of fundamental frequencies ( $\hat{\Omega}$ ) for orthotropic homogeneous cylindrical shells for different wave numbers (a/b = 1,  $R_2/a = 1$ , h/a = 0.1,  $1/R_1 = 0$ ,  $\hat{\Omega} = \Omega a \sqrt{\rho/E_\nu}$ )

| n |     | <i>m</i> = 1 | <i>m</i> = 2 | m = 3    | <i>m</i> = 4 | <i>m</i> = 5 | <i>m</i> = 6 |
|---|-----|--------------|--------------|----------|--------------|--------------|--------------|
|   | 3-D | 1.04085      | 2.41276      | 4.11579  | 5.93372      | 7.78184      | 9.62817      |
| I | PSD | 1.09189      | 2.45460      | 4.23881  | 6.21438      | 8.29333      | 10.45184     |
|   | CSD | 1.07475      | 2.34178      | 3.89006  | 5.51004      | 7.13494      | 8.74763      |
|   | TST | 1.14313      | 2.83420      | 5.57063  | 9.18375      | 13.46425     | 17.41943     |
|   | 3-D | 2.09560      | 3.00690      | 4.47600  | 6.17789      | 7.96114      | 9.76724      |
| • | PSD | 2.23166      | 3.11351      | 4.63052  | 6.47026      | 8.47328      | 10.58518     |
| 4 | CSD | 2.10261      | 2.91833      | 4.21882  | 5.71108      | 7.26438      | 8.83414      |
|   | TST | 2.64497      | 3.77786      | 6.19582  | 9.64978      | 13.84158     | 18.53581     |
|   | 3-D | 3,79493      | 4.40105      | 5.53384  | 6.99587      | 8.61936      | 10.31605     |
| • | PSD | 4.03139      | 4.60653      | 5.75652  | 7.32258      | 9.14262      | 11.12949     |
| 3 | CSD | 3.64408      | 4.18708      | 5.18111  | 6.45052      | 7.85330      | 9.31876      |
|   | TST | 5.46968      | 6.17649      | 7.94639  | 10.85995     | 14.66478     | 19.07848     |
|   | 3-D | 5.63314      | 6.08162      | 6.96436  | 8.18815      | 9.62322      | 11.17793     |
|   | PSD | 6.03517      | 6.45147      | 7.32643  | 8.61674      | 10.21128     | 12.02542     |
| 4 | CSD | 5.27341      | 5.67727      | 6.44935  | 7,50530      | 8.73691      | 10.07120     |
|   | TST | 9.28491      | 9.64745      | 10.85959 | 13.08162     | 18.26925     | 20.20189     |
|   | 3-D | 7.48761      | 7.85500      | 8.57043  | 9.60352      | 10.86447     | 12.27431     |
| ~ | PSD | 8.13620      | 8.46125      | 9.15315  | 10.21892     | 11.59781     | 13.22603     |
| 3 | CSD | 6.90648      | 7.23117      | 7.85529  | 8.74126      | 9.81579      | 11.01692     |
|   | TST | 13.49825     | 13.84378     | 14.66423 | 16.26830     | 18.76569     | 22.07201     |
|   | 3-D | 8.68429      | 9.49798      | 10.25407 | 11.14312     | 12.25850     | 13.53670     |
|   | PSD | 10.31101     | 10.57769     | 11.14483 | 12.07983     | 11.02184     | 12.10090     |
| 0 | CSD | 8.52564      | 8.80021      | 9.32326  | 10.07983     | 11.02184     | 12.10090     |
|   | TST | 17.17463     | 18.48576     | 19.06173 | 20.19360     | 22.06780     | 24.71657     |
|   | 3-D | 11.18770     | 11.44636     | 11.85606 | 12.74791     | 13.74617     | 14.91182     |
| - | PSD | 12.56186     | 12.78788     | 13.26611 | 14.02998     | 15.07075     | 16.36456     |
| 1 | CSD | 10.12930     | 10.36944     | 10.82037 | 11.47820     | 12.31147     | 13.28365     |
|   | TST | 19.13495     | 23.24020     | 23.80560 | 24.61440     | 25.99090     | 28.04362     |
|   | 3-D | 12.99253     | 13.22186     | 13.68342 | 14.29142     | 15.28707     | 16.35888     |
| U | PSD | 14.98969     | 15.09425     | 15.50632 | 16.16905     | 17.08463     | 18.24131     |
| 8 | CSD | 11.71966     | 11.83443     | 12.33183 | 12.91299     | 13.65742     | 14.53780     |
|   | TST | 21.01155     | 27.22880     | 28.67141 | 29.32695     | 30.34223     | 31.90483     |
|   |     |              |              |          |              |              |              |

Table 6. Comparison of fundamental frequencies ( $\overline{\Omega}$ ) for orthotropic two-layered (0/90) cylindrical shells for different wave numbers (a/b = 1,  $R_2/a = 1$ , h/a = 0.1,  $1/R_1 = 0$ ,  $\overline{\Omega} = \Omega a \sqrt{\rho/E_r}$ )

|     |     | Homogeneous shell |           |            | 0/90 Shell |         |            |
|-----|-----|-------------------|-----------|------------|------------|---------|------------|
| R¦a |     | h/a = 0.05        | h/a = 0.1 | h/a = 0.15 | h/a = 0.05 | h/a=0.1 | h/a = 0.15 |
|     | 3-D | 1.21403           | 1.42872   | 1.60041    | 1.29835    | 1.39974 | 1.51936    |
|     | PSD | 1.28525           | 1.60538   | 1.84983    | 1.32595    | 1.49075 | 1.68141    |
| I   | CSD | 1.28089           | 1.57496   | 1.78352    | 1.32483    | 1.48008 | 1.64797    |
|     | TST | 1.30657           | 1.79568   | 2.37996    | 1.33000    | 1.52391 | 1.78940    |
|     | 3-D | 0.87702           | 1.29295   | 1.58068    | 0.79577    | 1.05528 | 1.31111    |
| 2   | PSD | 0.90697           | 1.35302   | 1.65888    | 0.81059    | 1.09708 | 1.38083    |
| -   | CSD | 0.90021           | 1.31347   | 1.57769    | 0.80870    | 1.08054 | 1.33375    |
|     | TST | 0.93961           | 1.59277   | 2.28118    | 0.81618    | 1.14507 | 1.52705    |
|     | 3-D | 0.79315           | 1.26750   | 1.58194    | 0.64044    | 0.96917 | 1.26650    |
| •   | PSD | 0.80865           | 1.29559   | 1.61714    | 0.64949    | 0.99330 | 1.30815    |
| 2   | CSD | 0.80093           | 1.25354   | 1.53231    | 0.64713    | 0.97455 | 1.25698    |
|     | TST | 0.84569           | 1.54813   | 2.26036    | 0.65602    | L.04657 | 1.46512    |
|     | 3-D | 0.76111           | 1.25859   | 1.58279    | 0.57419    | 0.93637 | 1.25032    |
|     | PSD | 0.77049           | 1.27445   | 1.60196    | 0.58038    | 0.95306 | 1.28092    |
| -4  | CSD | 0.76234           | 1.23141   | 1.51576    | 0.57775    | 0.93332 | 1.22810    |
|     | TST | 0,80950           | 1.53186   | 2.25285    | 0.58749    | 1.00862 | 1.44211    |
|     | 3-D | 0.74572           | 1.25446   | 1.58326    | 0.54039    | 0.92065 | 1.24272    |
| ¢   | PSD | 0.75203           | 1.26446   | 1.59482    | 0.54500    | 0.93361 | 1.26797    |
| 2   | CSD | 0.74366           | 1.22096   | 1.50798    | 0.54219    | 0.91338 | 1.21434    |
|     | TST | 0.79206           | 1.52420   | 2.24934    | 0.55247    | 0.99034 | 1.43120    |
|     | 3-D | 0.72460           | 1.24896   | 1.58396    | 0.49127    | 0.89912 | 1.23249    |
| 10  | PSD | 0.72654           | 1.25094   | 1.58520    | 0.49341    | 0.90679 | 1.25034    |
| 10  | CSD | 0.71784           | 1.20679   | 1.49748    | 0.49031    | 0.88584 | 1.19559    |
|     | TST | 0.76804           | 1.51388   | 2.24462    | 0.50149    | 0.96519 | 1.41639    |
|     | 3-D | 0.71920           | 1.24751   | 1.58415    | 0.47812    | 0.89363 | 1.22992    |
| 20  | PSD | 0.72000           | 1.24752   | 1.58278    | 0.47955    | 0.89992 | 1.24586    |
| 20  | CSD | 0.71121           | 1.20321   | 1.49483    | 0.47636    | 0.87877 | 1.19083    |
|     | TST | 0.76189           | 1.51128   | 2.24343    | 0.48782    | 0.95876 | 1.41264    |
|     | 3-D | 0.71739           | 1.24612   | 1.58121    | 0.47365    | 0.89179 | 1.22905    |
| ~   | PSD | 0.71780           | 1.24638   | 1.58197    | 0.47483    | 0.89761 | 1.24437    |
| 10  | CSD | 0.70898           | 1.20201   | 1.49394    | 0.47161    | 0.87640 | 1.18923    |
|     | TST | 0.75983           | 1.51041   | 2.24304    | 0.48317    | 0.95661 | 1.41139    |

Table 7. Comparison of fundamental frequencies  $(\overline{\Omega})$  for orthotropic homogeneous and two-layered (0/90) spherical shells for different R/a and h/a ratios  $(a/b = 1, \overline{\Omega} = \Omega a \sqrt{\rho/E_y})$ 

|   |     |          |              |              |              | •            |              |
|---|-----|----------|--------------|--------------|--------------|--------------|--------------|
| n |     | m = 1    | <i>m</i> = 2 | <i>m</i> = 3 | <i>m</i> = 4 | <i>m</i> = 5 | <i>m</i> = 6 |
|   | 3-D | 1.42872  | 3.27331      | 5.50649      | 7.75736      | 9.99933      | 12.23533     |
| 1 | PSD | 1.60538  | 3.46843      | 5.68772      | 7.99846      | 10.41384     | 12.96535     |
| • | CSD | 1.57496  | 3.23244      | 5.13567      | 7.03161      | 8.90895      | 10.77278     |
|   | TST | 1.78568  | 5.36828      | 7.35255      | 9.41377      | 11.53411     | 13.68648     |
|   | 3-D | 2.07600  | 3.53429      | 5.66760      | 7.87736      | 10.09809     | 12.32027     |
| r | PSD | 2.21695  | 3.71369      | 5.83763      | 8.10798      | 10.49975     | 13.03416     |
| 2 | CSD | 2.18070  | 3.47708      | 5.28908      | 7.14946      | 9.00877      | 13.86177     |
|   | TST | 2.44004  | 5.91644      | 9.10874      | 10.84443     | 12.72913     | 14.70778     |
|   | 3-D | 3.06516  | 4.10922      | 6.03992      | 8.15349      | 10.31955     | 12.50657     |
| • | PSD | 3.17490  | 4.26364      | 6.19484      | 8.37051      | 10.70610     | 13.20203     |
| 3 | CSD | 3.10694  | 4.01268      | 5.64279      | 7.41557      | 9.22524      | 11.04674     |
|   | TST | 3.59212  | 6.52707      | 11.44004     | 12.87985     | 14.50339     | 16.26794     |
|   | 3-D | 4.32251  | 4.98212      | 6.65598      | 8.62103      | 10.59572     | 12.82174     |
|   | PSD | 4.34029  | 5.10655      | 6.79153      | 8.82192      | 11.06554     | 13.49799     |
| 4 | CSD | 4.20587  | 4.80924      | 6.21447      | 7.85502      | 9.58212      | 11.34823     |
|   | TST | 5.22100  | 7.61657      | 13.29738     | 15.27933     | 16.67263     | 18.22890     |
|   | 3-D | 5.55345  | 6.06453      | 7.48802      | 9,27688      | 11.23209     | 13.27414     |
| ç | PSD | 5.61708  | 6.16032      | 7.60257      | 9.46037      | 11.58443     | 13.93101     |
| J | CSD | 5.38348  | 5.78017      | 6.96917      | 8.45684      | 10.07850     | 11.76950     |
|   | TST | 7.26633  | 9.22016      | 14.27403     | 17.89553     | 19.10233     | 20.47558     |
|   | 3-D | 6,90523  | 7.27443      | 8.48318      | 10.09355     | 11.91499     | 13.85729     |
| 6 | PSD | 6.95129  | 7.34651      | 8.57864      | 10,26078     | 12.25076     | 14.49551     |
| U | CSD | 6.59072  | 6.85176      | 7.85617      | 9.18182      | 10.69807     | 12.30179     |
|   | TST | 9.65830  | 11.27930     | 15.65315     | 20.64238     | 21.70469     | 22.92382     |
|   | 3-D | 8.28209  | 8.55810      | 9.59200      | 11.03685     | 12.72238     | 14.55700     |
| 7 | PSD | 8.31543  | 8.61333      | 9.67339      | 11.19186     | 13.04496     | 15.17923     |
| , | CSD | 7.80437  | 7.97794      | 8.83210      | 10.02834     | 11.41942     | 12.93077     |
|   | TST | 12.32775 | 13.70261     | 17.44443     | 23.43373     | 24.42396     | 25.51531     |
|   | 3-D | 9.66931  | 9.88399      | 10.77771     | 12.07596     | 13.63132     | 15.35680     |
| 8 | PSD | 9.69664  | 9.93085      | 10.85258     | 12.22547     | 13.94671     | 15.96812     |
| 0 | CSD | 9.01444  | 9.13267      | 9.86628      | 10.93976     | 12.22191     | 13.64107     |
|   | TST | 15.21175 | 16.40283     | 19.59905     | 25.27066     | 27.22444     | 28.21021     |
|   |     |          |              |              |              |              |              |

Table 8. Comparison of fundamental frequencies  $(\vec{\Omega})$  for orthotropic homogeneous spherical shells for different wave numbers  $(a/b = 1, R_1/a = R_2/a = 1, h/a = 0.1, \vec{\Omega} = \Omega a \sqrt{\rho/E_{\nu}})$ 

|   |     |              |              |              |              | •            |              |
|---|-----|--------------|--------------|--------------|--------------|--------------|--------------|
| n |     | <i>m</i> = 1 | <i>m</i> = 2 | <i>m</i> = 3 | <i>m</i> = 4 | <i>m</i> = 5 | <i>m</i> = 6 |
|   | 3-D | 1.39974      | 2.43873      | 4.05310      | 5.84554      | 7.68958      | 8.79732      |
| 1 | PSD | 1.49075      | 2.56254      | 4.25854      | 6.20360      | 8.27291      | 10.43078     |
| • | CSD | 1.48008      | 2.46151      | 3.92396      | 5.51209      | 7.12350      | 8.73011      |
|   | TSŤ | 1.52391      | 2.89707      | 5.50027      | 9.02660      | 13.24407     | 17.41747     |
|   | 3-D | 2.44203      | 3.04522      | 4.41687      | 5.79381      | 8.03207      | 9.68411      |
| 2 | PSD | 2.62378      | 3.23980      | 4.60005      | 6.46350      | 8.54558      | 10.56502     |
| ÷ | CSD | 2.52929      | 3.06519      | 4.26788      | 5.72230      | 7.25997      | 8.82298      |
|   | TST | 2.92179      | 3.82427      | 6.11914      | 9.48366      | 13.60235     | 18.23648     |
|   | 3-D | 4.08410      | 4.43275      | 5.47411      | 6.90512      | 8.52349      | 10.22652     |
| , | PSD | 4.36988      | 4.72430      | 5.78704      | 7.31569      | 9.12123      | 11.10530     |
| د | CSD | 4.04792      | 4.33741      | 5.23700      | 6.46472      | 7.84913      | 9.30665      |
|   | TST | 5.54551      | 6.13159      | 7.83020      | 10.67702     | 14.42092     | 18.78285     |
|   | 3-D | 5.71021      | 6.11283      | 6.90916      | 8.09839      | 9.52445      | 11.08302     |
|   | PSD | 6.34133      | 6.56740      | 7.36517      | 8.61625      | 10.19310     | 12.00174     |
| 4 | CSD | 5.66932      | 5.83753      | 6.51731      | 7.52796      | 8.73729      | 10.06090     |
|   | TST | 9.03503      | 9.49056      | 10.67910     | 12.86521     | 16.01181     | 19.90538     |
|   | 3-D | 7.40020      | 7.89044      | 8.52272      | 9.51883      | 10.76682     | 12.17710     |
| ۲ | PSD | 8.41897      | 8.57892      | 9.20134      | 10.22867     | 11.58767     | 13.20768     |
| 5 | CSD | 7.29670      | 7.40360      | 7.93734      | 8.77559      | 9.82431      | 11.01175     |
|   | TST | 12.97093     | 13,55461     | 14,40547     | 16.00500     | 18.48406     | 21.76722     |
|   | 3-D | 9.03246      | 9.69485      | 10.21499     | 11.06553     | 12.16473     | 13,44009     |
| 6 | PSD | 10.57303     | 10.69708     | 11.20196     | 12.05996     | 13.23292     | 14.67443     |
| U | CSD | 8.90756      | 8.98359      | 9.41883      | 10.12649     | 11.04010     | 12.10281     |
|   | TST | 18.43406     | 18.01580     | 18.71242     | 19.87494     | 21.75386     | 24.39637     |
|   | 3-D | 11.43566     | 11.49662     | 11.93697     | 12.67820     | 13.65780     | 14.81747     |
| 7 | PSD | 12.80345     | 12.90734     | 13.33031     | 14.06064     | 15.08097     | 16.36371     |
| , | CSD | 8.90756      | 8.98359      | 9.41883      | 10.12649     | 11.04010     | 12.10281     |
|   | TST | 16.43406     | 18.01580     | 18.71242     | 19.87494     | 21.75386     | 24.39637     |
|   | 3-D | 13.24313     | 13.28095     | 13.66228     | 14.28615     | 15.20492     | 16.26823     |
| 8 | PSD | 15.11949     | 15.21162     | 15.57526     | 16.20775     | 17.10415     | 18.24960     |
| 0 | CSD | 12.07631     | 12.13174     | 12.44884     | 12.98151     | 13.69501     | 14.55550     |
|   | TST | 20.85831     | 26.32647     | 28.07046     | 28.87560     | 29.94918     | 31.53944     |
|   |     |              |              |              |              |              |              |

Table 9. Comparison of fundamental frequencies ( $\overline{\Omega}$ ) for orthotropic two-layered (0/90) spherical shells for different wave numbers (a/b = 1,  $R_1/a = R_2/a = 1$ , h/a = 0.1,  $\overline{\Omega} = \Omega a \sqrt{\rho/E_r}$ )

hence make TST unacceptable for thick shells. As the radius of the shell increases, the error in PSD decreases and that in CSD increases. It may be seen from these tables that the predictions of PSD are remarkably accurate, even for thick shells with higher (m, n) values than those of CSD, when compared with the 3-D analysis.

### CONCLUSIONS

The three-dimensional elasticity solution for free vibration of doubly curved, shallow shells on rectangular planform and made of an orthotropic material has been presented. Using the assumption that the thickness to radius ratio is negligible compared to unity, the governing equilibrium equations have been reduced to differential equations with constant coefficients. Furthermore, by dividing the shell thickness into a number of layers, such that their individual thickness to radius ratio is kept as low as practicable (and in this study it is shown to be 1/100, very accurate results were obtained for thick shallow shells. Numerical results indicate that the parabolic shear deformation theory and the thin shell theory consistency overestimate the frequencies, whereas the Mindlin-type constant shear deformation theory underestimates the frequencies in most cases, except in some cases when compared with the present 3-D analysis. This indicates that the frequencies from the parabolic shear deformation theory and the classical shell theory are the upper bounds (bounds being narrowed in the case of the parabolic shear deformation theory), whereas those from the Mindlin-type constant shear deformation theory are the lower bounds to the actual values from the 3-D analysis. Comparison studies also indicate that the thin shell theory results are unacceptable for thick shells with a thickness-to-radius ratio of more than 1/20. The present analysis can easily be extended to shallow shell surfaces with twist, such as a hyperbolic paraboloid (hypar shell), by including the twist term in the straindisplacement relations (1) and the equilibrium equations (5).

Acknowledgements — The author thanks Mrs Priyadarshini for her help in the preparation of the manuscript and for her help in obtaining the numerical results. The critical comments of the two anonymous referees on an earlier version of the manuscript, and their interest in this work is gratefully acknowledged. This work was carried out when the author was at the University of Canterbury, Private Bag, Christchurch, New Zealand.

#### REFERENCES

- Armenákas, A. E. and Reitz, E. S. (1973). Propagation of harmonic waves in orthotropic circular cylindrical shells. J. Appl. Mech. 40, 168–174.
- Bhimaraddi, A. (1984). A higher-order for free vibration analysis of circular cylindrical shells. Int. J. Solids Structures 20(7), 623–630.
- Bhimaraddi, A. (1987). Static and transient response of cylindrical shells. Thin-Walled Struct. 5(3), 157-179.
- Chou, G.-H. and Achenbach, J. D. (1972). Three-dimensional vibrations of orthotropic cylinders. J. Engng Mech. Div., proc. ASCE 98, EM(4), 813–822.
- Eringen, A. C. and Suhubi, E. S. (1975). Elastodynamics Volume II-Linear Theory. Academic Press, NY.
- Flügge, W. (1962). Stresses in Shells. Springer, Berlin.
- Gazis, D. C. (1959). Three-dimensional investigation of the propagation of waves in hollow circular cylinders, I: Analytical foundation. J. Accoust. Soc. Amer. 31(5), 568–573.
- Gol'denviezer, A. L. (1961). Theory of Elastic Thin Shells, Pergamon Press, Oxford.
- Greenspon, J. E. (1958). Flexural vibrations of a thick walled circular cylinder. Proc. U.S. National Cong. Applied Mechanics, Brown University, Providence, Rhode Island, pp. 163–173.
- Leissa, A. W. (1973). Vibration of shells. NASA SP-288.
- Nelson, R. B. (1973). Natural vibrations of laminated orthotropic spheres. Int. J. Solids Structures 9(3), 305– 311.
- Nelson, R. B., Dong, S. B. and Kalra, R. D. (1971). Vibrations and waves in laminated orthotropic circular cylinders. J. Sound Vibr. 18(3), 429–444.
- Niordson, F. I. (1985). Shell Theory. North-Holland, Amsterdam.
- Saada, A. S. (1974). Elasticity: Theory and Applications. Pergamon Press, NY.
- Sanders, J. L. Jr (1959). An improved first approximation theory for thin shells. NASA TR, R-24.
- Seide, P. (1975). Small Elastic Deformations of Thin Shells. Noordhoff, Leyden.
- Shah, A. H., Ramkrishnan, C. V. and Datta, S. K. (1969a). Three-dimensional and shell-theory analysis of elastic waves in a hollow sphere, part 1: Analytical foundation. J. Appl. Mech. 36(3), 431-439.
- Shah, A. H., Ramkrishnan, C. V. and Datta, S. K. (1969b). Three-dimensional and shell-theory analysis of elastic waves in a hollow sphere, part 2: Numerical results. J. Appl. Mech. 36(3), 440–444.
- Srinivas, S. (1974). Analysis of laminated, composite, circular cylindrical shells with general boundary conditions. NASA TR, R-412.
- Srinivas, S. and Rao, A. K. (1970). Bending, vibration and buckling of simply supported thick orthotropic rectangular plates and laminates. Int. J. Solids Structures 61, 1463–1481.

Stein, M. (1986). Nonlinear theory for plates and shells including the effects of transverse shearing. AIAA Jl 24(9), 1537-1544.
Timoshenko, S. and Woinowsky-Krieger, S. (1959). Theory of Plates and Shells. McGraw-Hill, NY.

# APPENDIX

Definitions of  $c_1 - c_7$  appearing in eqns (12) and (14):

 $c_{1} = a_{16}b_{13}; \quad c_{2} = a_{16}b_{14} + a_{17}b_{13}$   $c_{3} = a_{16}b_{15} + a_{17}b_{14} + a_{18}b_{13} + a_{12}b_{1} + a_{14}b_{5}$   $c_{4} = a_{16}b_{15} + a_{17}b_{15} + a_{18}b_{14} + a_{12}b_{2} + a_{13}b_{1} + a_{14}b_{6} + a_{15}b_{5}$   $c_{5} = a_{16}b_{17} + a_{17}b_{16} + a_{18}b_{15} + a_{12}b_{3} + a_{13}b_{2} + a_{14}b_{7} + a_{15}b_{6}$   $c_{6} = a_{17}b_{17} + a_{18}b_{16} + a_{12}b_{4} + a_{13}b_{3} + a_{14}b_{8} + a_{15}b_{7}$   $c_{7} = a_{18}b_{17} + a_{13}b_{4} + a_{15}b_{8}.$ 

Definitions for  $b_1 - b_{45}$  appearing in eqn (17):

$$\begin{split} b_1 &= -a_i a_1; \quad b_2 &= -a_2 a_8 - a_6 a_7; \quad b_3 &= a_4 a_{10} - a_3 a_9 - a_6 a_8 \\ b_4 &= a_4 a_{11} - a_6 a_4; \quad b_5 &= -a_1 a_{10}; \quad b_8 &= -a_1 a_{11} - a_2 a_{10} \\ b_7 &= -a_3 a_{10} - a_2 a_{11} + a_4 a_3; \quad b_8 &= -a_1 a_{11} + a_4 a_6 \\ b_9 &= (Nb_1 + Mb_3) C_{66}; \quad b_{13} &= a_1 a_7; \quad b_{14} &= a_1 a_8 + a_2 a_7 \\ b_{13} &= a_1 a_8 + a_2 a_8 + a_3 a_3; \quad b_{16} &= a_2 a_9 + a_3 a_6; \quad b_{17} &= a_1 a_9 - a_6^2 \\ b_{18} &= (b_1 + Mb_3) C_{44}; \quad b_{19} &= (b_2 + Mb_{14} - b_1/R_1) C_{44}; \quad b_{20} &= (b_3 + Mb_{13} - b_2/R_1) C_{44} \\ b_{21} &= (b_4 + Mb_{16} - b_1/R_1) C_{44}; \quad b_{21} &= (Mb_1 - b_4/R_1) C_{44}; \quad b_{21} &= (b_5 + Nb_{13}) C_{53} \\ b_{24} &= (b_6 + Nb_{14} - b_3/R_2) C_{53}; \quad b_{25} &= (b_7 + Nb_{15} - b_6/R_2) C_{53}; \\ b_{26} &= (b_8 + Nb_{16} - b_7/R_2) C_{53}; \quad b_{27} &= (Nb_1 - b_4/R_2) C_{53}; \quad b_{28} &= b_{13} C_{11} \\ b_{29} &= \left[\frac{C_{11}}{R_1} + \frac{C_{12}}{R_2}\right] b_{11} + C_{11} b_{14}; \quad b_{10} &= \left[\frac{C_{11}}{R_1} + \frac{C_{12}}{R_2}\right] b_{14} + C_{11} b_{15} - C_{11} Mb_1 - C_{12} Nb_5 \\ b_{11} &= \left[\frac{C_{11}}{R_1} + \frac{C_{12}}{R_2}\right] b_{15} + C_{13} b_{16} - C_{11} Mb_5 - C_{12} Nb_6 \\ b_{32} &= \left[\frac{C_{11}}{R_1} + \frac{C_{12}}{R_2}\right] b_{15} + C_{23} b_{16}; \quad b_{36} &= \left[\frac{C_{12}}{R_1} + \frac{C_{23}}{R_2}\right] b_{14} + C_{23} b_{15} - C_{12} Mb_1 - C_{22} Nb_5 \\ b_{35} &= \left[\frac{C_{12}}{R_1} + \frac{C_{22}}{R_2}\right] b_{15} + C_{23} b_{16}; \quad b_{36} &= C_{23} b_{13} \\ b_{35} &= \left[\frac{C_{12}}{R_1} + \frac{C_{22}}{R_2}\right] b_{15} + C_{23} b_{16} - C_{12} Mb_2 - C_{22} Nb_6 \\ b_{37} &= \left[\frac{C_{12}}{R_1} + \frac{C_{22}}{R_2}\right] b_{15} + C_{23} b_{16} - C_{22} Nb_7 \\ b_{38} &= \left[\frac{C_{11}}{R_1} + \frac{C_{22}}{R_2}\right] b_{15} + C_{23} b_{16} - C_{22} Nb_7 \\ b_{39} &= \left[\frac{C_{11}}{R_1} + \frac{C_{22}}{R_2}\right] b_{15} + C_{23} b_{16} - C_{22} Nb_7 \\ b_{41} &= \left[\frac{C_{11}}{R_1} + \frac{C_{23}}{R_2}\right] b_{15} + C_{13} b_{16} - C_{13} Mb_2 - C_{23} Nb_7 \\ b_{44} &= \left[\frac{C_{13}}{R_1} + \frac{C_{23}}{R_2}\right] b_{15} + C_{13} b_{16} - C_{13} Mb_2 - C_{23} Nb_7 \\ b_{44} &= \left[\frac{C_{13}}{R_1} + \frac{C_{23}}{R_2}\right] b_{15} - C_{13} Mb_2 - C_{23}$$