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Abstract-The free vibration analysis of homogeneous and laminated doubly curved shells on
rectangu!;lr planform and made of an orthotropic material has been presented using the three­
dimensional elasticity equations. A solution is obtained utilizing the asumption that the ratio of the
shell thickness to its middle surf"ce mdius is negligible. as comp<tred to unity. However. it is shown
that by dividing the shell thickm:ss into layers of smaller thickness and matching the interfal.-e
displacement "nd strcs-~ continuity conditions. very accurate results can be obtained ev.:n for very
thick shells. The two-dimension..l shell theories have been comp<tred for their accumcy in the light
of the pr.:sent thrl.-e·dimensional el..sticity ..n"lysis.

INTRODUCTION

Structural applications of laminitted composite shells <arc ever on the incremie due to their
high-modulus and low-density material properties. As a consequence. analysis of such
structures is gaining considerable importance over the years and demands accurate ~tnalysis.

It is well known that the composite materials arc anisotropic in nature and are more often
treated as orthotropic materhtls. The analysis ofsuch structures using the thn..'e-dimensional
(3-D) elasticity theory involves considerable mathematical manipulation. as may be seen
in the work of Shrinivas and Rao (1970) for the case of rectangular plates. Due to the
presence ofcurvature, as in the case ofcylindrical and spherical shells. the problem becomes
unapproachable through the 3-D equations since the governing ditTerential equations for
such shells involve variable coelJicients.

In spite of the presence of inherent mathematical complexities. many useful solutions
to free vibration problems of cylindrical and spherical shells made of isotropic material
have been given by Greenspon (1958), Gazis (1959), Shah et al. (I969a,b) and Eringen and
Suhubi (1975). It may be noted from these studies that for shells made ofisotropic materials,
governing differential equations of the 3-D elasticity can be easily solved in terms of
displacement potentials in which variation ofdisplacements in the normal direction is finally
expressed in terms of Bessel functions. However, a similar approach is not possible if the
material is orthotropic and hence the solution is usually obtained using the Frobenius
method-normally employed when solving differential equations with variable coefficients.
This approach is used in the works of Chou and Achenbach (1972), Armenakas and Reitz
(1973) and Srinivas (1974) for the case ofclosed cylindrical shells. Numerical methods such
as the extended Ritz method, have been used by Nelson et al. (1971) to obtain the vibration
frequencies of closed finite length cylinders, and by Nelson (1973) for spherical shells.

It may be observed that the success of the 3-D analysis of shells depends on the ability
to solve the resulting differential equations with variable coefficients. In order to avoid
going through the complex mathematical manipulations, researchers over the years have
reduced the 3-D shell problem to a two-dimensional problem. as may be found in the
monumental works of Fliigge (1962), Gol'denveizer (1961), Sanders (1959) and Timo­
shenko and Woinowsky-Krieger (1959). Thus, within the framework of different shell
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theories the vibration problems of shells have received considerable attention. for example.
see Leissa (1973). Niordson (1985) and Seide (1975).

It may be said here that. besides being 2-D approximations, most of these 2-D theories
fail to satisfy the interface transverse stress continuity conditions in the case of laminated
structures. This is so because firstly. most 2-D theories do not account for the transverse
normal stress. and secondly since they are based on an assumed displacement form, it is
very difficult to select a displacement form which results in the continuity of transverse
stresses across the interfaces of an arbitrarily laminated shell. It is easy to satisfy the
interface continuity conditions if the laminated shell is treated as a 3-D problem since all
the stresses are now functions of the normal coordinate (z). The complex mathematical
manipulations can still be avoided for some doubly curved. simply supported shells without
reducing them to 2-D cases. but by reducing the governing equations to those with constant
coefficients and thus retaining the 3-D characteristic of the problem. The results from such
an analysis are useful in validating the less approximate 2-D theories.

It may be suid here thut. to date. the vibration problems of open cylindrical shell and
doubly curved shell have not been solved using the analytical approach to treat the 3-0
elusticityequations. In this paper an attempt has been made to solve these problems using
the 3-D equations. In the present 3-D analysis of simply supported. doubly curved shallow
shells of rectangular plan form. the displucements are chosen to vary trignometrically in the
x- and y-directions (which arc the Curtesian coordinates of the projection of the middle
surf::lce on the x--y plane). The three governing coupled partial differential equations (POEs)
arc reduced to three coupled ODEs with the normal coordinate (z) as the independent
vuri'lble. These three coupled ODEs arc then solved to obtain the complete solution. In the
cuse of laminated shells each ply is treated us a homogeneous shell und by satisfying the
internll.:e and exterior surface conditions. a frequency determinant is set up ..nd solved.

HASIC EQUATIONS OF TilE THREE·DIMENSIONAL ELASTICITY

for an open shallow shell. the middle surface can be defined by a set of Cartesi.m
coordinate systems as shown in Fig. I. In the present analysis we restrict our attention to
the analysis of doubly curved. sh41llow shells on rectangular planform with zero twist.
Such surfaces arc defined by: = x~/2R, +y~/2R~. The paraboloid of revolution on square
pl<lnform. the translational shell on rectangular planform and the spherical shell on square
planform are the class of surfaces which can be treated by the present analysis. Assuming
the twist of the surface to be zero. the strain displacement relations of the 3-D elasticity

ylv} ~-_-l=

xlv}

Loyer 1
Layer 2

Shell middle
surface

Layer nThickness OefrJils
for

Lominaf~Shdl

Fig. I. The dimensions and coordinate system for a doubly curved shallow shell.
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equations corresponding to the present problem are written (Saada. 1974) as

[
RI J[cu wJ [ Rz J[at, wJ oWE.= -- -+-; Ey = -- -+-; E:=-

. R, += ax R, R2+= ay R2 az

[
R I ] au [R' ] ct' [ R I J[ow U ] auy - -- -+ _.- -' Y = -- --- +-

of." - R, +: oy R z+= ax' .f: R 1 += ox R. az

1I!I'J

(I)

In these equations, x, y and z are the Cartesian coordinates in which z is measured from
the middle surface of the shell; u. v and ware the displacements in the X-. y. and z·
directions; R I and R2 are the middle surface radii of curvature (which are assumed to be
constant) ; Eo.. Er and 6: are the normal strains in the .'C-. y- and :·directions; and Y.... Y.t: and
}'•.: are the shear strains. In order to reduce the system ofequations with variable cOefficients
to those with constant coefficients, the following assumptions are made:

[-~J::::: I; [~-J::::: I.R,+: R2 += (2)

For these assumptions to be true. it is essential that (h/R 1) and (h/R2) « I. Thus. eqns
(2) can easily be satisfied if the shell is slightly curved or if the thickness of the shell is very
slllall compured to the radii of curvutures. Thus in the case of thick shells. the thickness of
the shell is to be divided into a number of layers with smuller thickness so that eqns (2) arc
satislil.xt. This will allow us to obtain the exact values for thick shells. Utilizing eqns (2) in
Clins ( I) the strain -displ:lccment relations are rewritten as

c1u IV llV IV VII'
I:. =;'l + °R--- ; 1:

0
" = ;,. + R---·; 1.:: =,,:

l,X 1 uy 2 v.

(lL' VU VII' VU II VW VV V
Y", = ..-. +;,--; Y..: = -- + _. - --; Yr: = - + - --.vx l.)' OX iJ: R. . iJy oz R2

The stress-stmin relations for an orthotropic material read

(3)

(4a)

(4b)

Here. (f,. (f,. and (f: arc the normal stresses; t,.... t.<: and t ..,: are the shear stresses; and elj

arc the elastic constants of the orthotropic material. Using eqn (2). the 3-0 stress equilibrium
equations (Saada, 1974) can be written as

(S)
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In the above equations. t is the time coordinate and p is the density of the material per unit
volume. Substituting the stress-strain relations (4), via the strain-displacement relations
(3), the above stress equilibrium equations can be written in terms of three displacements
as

The above equations arc the required equilibrium equations nnd they arc differential
equations with constant coetlicients. Had we not made usc of the assumptions in t.'qns (2) the
above equilibrium equations would have had coctlicients involving the normal coordinate:.
the solution of which would have caused a great deal of mathcm'ltical dillicultics. In the
next section. tlte solution of eqns (6) is sought using the method of separation of v'lriablcs.

SOLUTION OF THE 3-D EQUILIBRIUM EQUATIONS

The solution of the equilibrium eqns (6) is ditftcult to obtain for a given general
boundary and surface conditions. However. all-round simply supported shells render the
solution of these equations in terms of trigonometric functions possible. The following
modal solution for displacements and stresses satisfies the simply supported boundary
conditions:

II = Umn cos Mx sin Ny sin Or; (T.• = S.mn sin Mx sin Ny sin 0,;

L' = Vnm sin Mx cos Ny sin Ot; (Ty = S,.mn sin MX sin Ny sin Or;

w = Wmn sin Mx sin Ny sin Or; (T: = S:mn sin Mx sin Ny sin Ot;

t' ,: = T,:mn cos Nf.~ sin Ny sin Ot; t'y: = Ty:mn sin Mx cos Ny sin Or;

t.n = T nmn cos Mx cos Ny sin Ot, (7)

where

M = tim/a and N = mc/b.

Here, a and b arc the dimcnsions of the shell in the x- and y-dircction; III and n are the
number of half-waves in the .~- and y-direction; and 0 is the radian frequency associated
with the mode (l1I.tl). In the above modal solution we note that Umn • V",,, and JVmn are
functions of the normal coordinate =and are to be determined as the solution of the
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following ODEs, which are obtained after substituting eqns (7) in eqns (6) as

LI1U_+LI2V"",+LI3Wm" = 0

LZ1U_+LzzVm,,+LnW_ = 0

L3IUm"+LnV_+LHWm,, = 0;

where the differential operators Ljj are given by

901

(Sa)

(Sb)

(Se)

(9)

aI-au appearing in eqns (9) have the following definitions:

(10)

The solution of eqns (8) are obtaincd by cxpressing Um", V_and Wm.. in tcrms of a
displacement potcntial function 4>m" as follows:

Um" = (L1ZL B - LI)Lu )4>m,,; Vm"= (L Il L 21 - L23 L Il )4>mn

Wm" = (LIILu-LIZL2I)4>_. (II)

Substituting the above solution in eqns (8), it can be seen that eqns (8a) and (8b) are
satisfied identically and eqn (Sc) reduces to the following governing equation in 4>m,,:
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In the above equation and in the subsequent analysis, subscripts "mn" have been dropped
for the sake of simplicity and the expressions for cl-e, are given in the Appendix. Since eqn
(12) is of the order six, the solution q, involves six arbitrary constants and is sought in the
form:

(13)

and six CIS are obtained as the roots of the following equation:

(14)

The exact expression for q, depends on the nature of the roots ofeqn (14), for example, for
six real and distinct roots we can write

(tSa)

or in the matrix notation as

(ISb)

here 6'= {A,.A 2.A"A4,A s,A Il } is a column vector of six constants and
F = {Fit F2• FJ• F4 , Fs•FI>} is a row vector in which FI-F(, are the coefficients ofA I-A(,. and
are functions of the norm.tl coordinate :. Here, A I-All are the six arbitrary constants to be
determined using the following six traction-free surface conditions

1'.<: = 0; t •.: = 0; (1: = 0 (at: = +h/2)

t x: = 0; t y: = 0; (1: == 0 (at: = -hf2). (16)

Once 4> is obtained from eqn (15) the displacements U. V and W can be computed
using eqns (II) ; strains can be computed from eqns (3) ; and the stresses from eqns (4) as

[~] =~:
b2 b)

b'][ ::~']bll b7 bs tPl

TiCy 9 blO b ll bll q,

a lV

[W] ~"
b l4 bls b l6 b"]

tP lII

T.t: = b ls b l9 b20 b21 bn a"

Ty: 23 b24 bH b26 b21 tPl

tP

tPv

tP1Vn[b"
bn bJO bJI bn bH

]
tP lIl

Sy = bJ4 b)j b)6 bJ1 bn bn tP"
S: b40 b41 b42 b4J bH bH tPl

tP

(17a)

(17b)

(17c)

In the above, 'T' indicates differentiation with respect to =and the expressions for b l -b4S

are given in the Appendix. Thus knowing the complete variation of the stresses and
displacements in the :-direction. the frequency determinant can be set up by using the six.
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traction-free surface conditions (J6) as

[
+0..]
-0.. 6= 06=0.

where +0.. and -0.. are (3 x 6) matrices defined as follows:

903

(18)

FV

FIV

[h.. b41 b42 b4 ) b44 h"] Fill

+0.. = ~ bls b t9 bzo bZI bu F" (19a)

bn bZ4 b2 , bZ6 b27 F'
F Ilz-"12

Also. we define the following matrix which will be useful in the analysis of laminated and
sandwich-type shells

F'V

[hO) bl4 bl, b l6

h"]
Fill

+0.= ~ b l b2 b) b4 F" (19b)

b, b6 b, bs Fl

F lu-"12

Similarly. -0.. and -D. cun be obtuined by evaluating F. Fl. etc. at: = -h/2. in eqns (J9).
It is to be noted here that the frequency (0) appears implicitly in the expressions of the
codftcients of 0 and is to be dctcrmined by equating the determinant of D to zero. This
completes the formulation of the problem and its solution for a shell with given geometric
and material parameters (R I. R2• a. b. hand C/j)' It should be pointed out here that the
above procedure holds for a single layered shell and in the case of laminated and sandwich
shells. there arc six arbitrary constants for each layer. The frequency determinant is to be
set up by using the interface stress and displacement continuity conditions. in addition to
the known traction-free surface conditions. For layers i and i+ 1 the interface conditions
arc:

or in the matrix notation

h](/+Il
z= + 2

h](/+ I)

Z== +2

h](/+ I)

z= +2

[V z= _~r[V

[
TxZ h](1) == [Tx:

Z== --
2

[
s: h](1) =[s:

z= --
2

h]11+ I)

: = + 2

h](/+ I)

z== +­
2

h]U+ I)

z= +­2
(20a)

(20b)
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For example. if the shell is made up of two layers there will be 12 constants (A I-A I:,
six for each layer). to be determined using the six surface traction conditions [see eqns (16)]
and six interface (three transverse stresses and three displacements) continuity conditions
[see eqns (20)]. which results in 12 homogeneous algebraic equations as

(21 )

It is to be noted here that when the ratios h/R I and h/R: are not small enough to be
considered as « I. the thickness of the shell is divided into a number of layers with smaller
thickness values so that for any layer. the values of the ratios h/R I and h/R: become «I :
and the solution is obtained by using the interface stress and displacement continuity
conditions (20) and the surface traction conditions (16). For laminated shells and sandwich­
type shells for which h/R I and h/R.: are not too small. each layer shall be divided into sub­
layers with sufficiently smaller h/R I and hlRz ratios. However. a proper value for MR I

and h/R: can be chosen by conducting some numerical experiments and observing the
convergence of the frequency values.

Furthermore. it is to be noted here that the corresponding equations for rectangular
plates C'lO be deduced from the present analysis by using IjR I = I/R: = O. and those for
cylindric.l! shells by using fiR, = 0 and R: = R. Thus. the present procedure and the
corresponding computer coding has been checked by computing the results for isotropic
and orthotropic plates (Srinivas and Rao. 1970). Also. we note thut the approximations
made in eqns (2) hold true for rectangular plates and hence exact results C.lO be obt'lined
without subdividing the thickness of the plate. Since it is intended to compare the 2-0 shell
theories with the present exact 3-0 analysis. a brief discussion of the 2-D theories has been
included here for the suke of continuity nnd completeness.

TWQ.DIMENSIONAl DOUBLE CURVUD SHALLOW SIIEll THEORY

The 2-0 shell theories may be c1nssified into three categories: the Thin Shell Theories
(TST), the She.lr Deformation Theories. and the Higher-Order Theories. The discussion of
these various theories may be found in the publications by Bhimaraddi (1987) and Stein
(1986). Here we discuss briefly the parabollic shear deformation theory (Bhimaraddi: 1984,
J987) in the present context of the doubly curved shells. In this theory. the displacements
are expressed as

where f and its first derivative (f*) are functions of: only and are given as

[ 4-:] df [ 4-~]
f =: 1- 3;'2 : f* = d: = 1- /if .

(22)

(23)

[n these equations ltn• t'o and 11'0 arc the translations of a point on the shell middle surface;
and III and l'l are the rotations of a point on the middle surface in addition to the usual
flexural rotations CWo/V.l; and cWo/vy. AU the middle surface displacement parameters (viz.
lto. l'o. ,,'0. Ill' t'l) arc functions of (x.y) only. and are independent of the: coordinate. The
strains are written as

(24)
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It may be observed that the transverse shear strains vanish on the top (= = h/2) and
bottom (= = - h12) surfaces of the shell and they vary parabolically across the thickness.
It is to be noted here that the displacements corresponding to the Mindlin-type (in which
the transverse shear strains are constant across the thickness) Constant Shear Defonnation
(CSD) theory. can be obtained if one uses f = =and also the classical Thin Shell Theory
can be deduced if one uses f = 0 in the above equations. In the case of CSD. the shear
correction factor is to be used to correct the deficiencies in that theory (non-parabolic
variation of shear stresses and non-vanishing of the shear stresses at the top and bottom
surfaces of the shell). Further development of the theory follows a standard routine which
can be obtained in Bhimaraddi (1984. 1987) and will not be repeated here for the sake of
brevity.

DISCUSSION OF NUMERICAL RESULTS

It is to be said here that the present elasticity analysis yields an infinite number of
frequencies for each combination of (m. n) values. whereas. the PSD and CSD yield five
frequencies and TST yields three frequencies. Of these frequencies, the lowest frequency
corresponds to the flexural mode of vibration and only this frequency has been computed
and discussed in this study. In the numerical computations of CSD, the shear correction
factor used corresponds to 1t~/12. Since this is the first time that the analysis for shallow
(on rectangular planform) cylindrical shells and spherical shells has been given using the
3-D equations. all the numerical results have been given in a tabular form which are intended
to serve as bench-mark values for future studies. The typical orthotropic material properties
correspond to:

E,
25;

E:
I

G,: Gn G,.: I
0.25;= = , = = -~._- = S' Jt... = Jt:., = 0.03; ltv: = 0.4.

E,. E,. E,. E 2' E"v

llere E,. E" and E: are the Young's moduli; G"" G" and G,.: arc the shear moduli; and
II", II:., and II,: arc the Poisson ratios. As noted earlier in the case of thick shells for which
the assumptions in eqns (2) are not valid, the shell thickness has to be divided into a number
of layers such that for each layer, eqns (2) hold true. A proper value for hi R can be fixed
by conducting some numerical experiments in which the convergence of the frequency can
be observed.

Tables I, 2 and 3 show the convergence studies for homogeneous spherical shells on
rectangular planform with different hla and Ria ratios (Table I), and with different wave
numbers (Table 2), and with different aspect ratios (Table 3). It may be observed from
these tables that as the number of divisions in the shell thickness increases, the frequency
values converge monotonically from above. This pattern of convergence is completely in
agn:ement with Rayleigh's principle and this also validates the present approach. Fur­
thermore, this suggests that the frequencies from the present analysis (without dividing the
shell thickness) are the upper bounds to the exact values. It may be seen from Table I that
as hla ratio of the shell increases and as Ria ratio decreases, one has to divide the thickness
of the shell into a greater number of layers to achieve the convergence of the results. For a

Tahle I. Convergence studie~.9!1 an orthotropie spherical shell frequency (ill with dilTercnt hln
and R/n ratios (il:: o.,-/I'IE,: nih:: I) (E.:: 25E,; Go::: G.. '" !E,; G,,:: IE,; Jl .. :: 1:

I'" '" 0.03; I'" = 0.4)

m::n=l. (lih = I, Ria:: I m '" n '" I, alh:: I. hln '" 0.1

NJt Ilia'" 0.05 hla '" 0.1 hla = 0.15 Ria'" 3 Ria:: 5 Ria'" 10

1.:!43 13 1.S015:! 1.70:!93 1.27975 1.25902 1.25011
:! 1.22140 1.44837 1.63018 1.27070 1.25565 1.24926
5 1.21511 1.43177 1.60515 1.26799 1.25464 1.24900

10 1.21421 1.42933 1.60137 1.26760 1.25450 1.24896
15 1.21404 1.42888 1.60066 1.26753 1.25447 1.24896
:!O 1.21403 1.42872 1.60041 1.26750 1.25446 1.24896

t Number or divisions in the shell thickness.
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Table 2. ConvCfgence studies on an orthotropic spherical shell frequency (0) with different
mode numbers (m,,") (OaOaJpIE.; alb .. I; Ria = I; hla=O.I) (E,=25E,:

Gu =Gn = }E.: G.. = ~E.; P.. = j: p" = 0.03; p" =004)

N.I m=n=2 m=n=3 m=n=4 m=n= 5 m=II .. 6 m=n.7

I 3.61086 6.09921 8.66825 11.27l15 13.89055 16.51733
2 3.55698 6.05942 8.63790 11.24693 13.87052 16.50033
5 3.53794 6.04322 8.62408 11.23496 13.86002 16.49099

10 3.53503 6.04059 8.62166 11.23269 13.85787 16.48895
15 3.534-*9 6.04009 8.62119 11.23225 13.85744 16.48853
20 3.53419 6.03992 8.62103 11.23209 13.85729 16.-t8838

Table 3. Convergence studies on an orth.9tropic translational shell frequency (a) with
different aspect (a/b) ratios (0 =naJpIE,; m =n = I; RIa .. I: hIll = 0.1) (E, • 25E.:

G". Gn - !E.: G,," lE.;p,. '" !:p.,., "'0.03;p•., =0.4)

N,/ alb. 1.5 a/b", 2 alb .. 2.5 alb", 3 alb. 3.5 alb- 5

I 1.76559 2.13501 2.59033 3.11262 3.68538 5.58788
2 1.71716 2.09170 2.55159 3.07769 3.65358 5.56270
5 1.70218 2.07842 2.53980 3.06709 3.64392 5.55487

10 1.69998 2.07648 2.53808 3.06555 3.64252 5.553N
15 1.69957 2.07612 2.53776 3.06526 3.64225 5.55353
20 1.69943 2.07600 2.53765 3.06516 3.64216 5.55345

Table 4. Comparison of fundamental frequencies (0) for orthotropic homogeneous and~Q-layered (0/90)
cylindric'll shells for different RIa and IlIa ratios (alb .. I. IIR I .. O. 0 • OaJPiE,)

Homogeneous cylinder 0/90 Cylinder

Ria Ma .. 0.05 hla.., 0.1 hla .. 0.15 hla =0 0.05 hla .. (l.1 Ma =0.15

3-D 0.119171 1.32416 1.61690 0.7116ll3 1.04085 1.29099
PSO 0.89791 1.33745 1.63718 0.79993 Ul9189 I.31H74
CSD 0.89124 1.29858 1.55779 0.79798 1.07475 1.33274
TST 0.93015 1.51257 2.23906 0.805110 1.l431J 1.54124

3·0 0.76632 1.26744 1.59247 0.57252 0.'U627 1.25377

2 PSO 0.76857 1.27076 1.59664 0.58000 0.95664 1.28933
CSO 0.76045 1.22790 1.51092 0.57733 0.93653 1.23527
TST 0.ll0747 1.52693 2.24197 0.58723 1.013911 1.457111

3·0 0.73968 1.25625 1.58789 0.52073 0.91442 I.N500

3 PSO 0.74095 1.25736 1.58856 0.52516 0.92642 1.90563
(SO 0.73246 1.21368 1.50158 0.52222 0.90563 1.21316
TST 0.78151 1.51784 2.24256 0.53294 0.98505 1.43751

3-0 0.73004 1.25227 1.58529 0.50110 0.90613 1.2-tO<J0

4 PSO 0.73094 1.25259 1.58569 0.50415 0.91506 1.25977
CSO 0.72231 1.20860 1.49826 0.5010') 0.89403 1.20454
TST 0.77213 1.51461 2.24277 0.51217 0.97408 1.42910

3·0 0.72552 1.25033 I.5ll424 0.49167 0.90200 I.231149

5 PSO 0.72625 1.25036 1.58436 0.49402 0.90953 1.25551
CSO 0.71755 1.20624 1.49671 0.49091 0.88840 1.20020
TST 0.76773 1.51310 2.24286 0.50216 0.96870 1.42464

3·0 0.71944 1.24735 1.58254 0.47859 0.89564 1.23374

10 PSO 0.71992 1.24738 1.58257 0..47997 0.90150 1.24l!75
CSO 0.71114 1.20307 1.49464 0,47677 0.lll!O26 1.19342
TST 0.76182 1.51108 2.24299 OA8ll27 0.96074 1.4170')

3·0 0.71791 1.24633 1.58210 0.47509 0.89341 1.231-tO

20 PSO 0.71833 1.24663 1.58212 0.47625 0.89904 1.24626
CSO 0.70952 1.20227 1.49412 0.47304 0.87779 1.19100
TST 0.76033 1.51058 2.24303 0.48459 0.95819 1.41400

3·0 0.71139 1.24612 1.58121 0.47365 0.89179 1.22905
PSO 0.71780 1.24638 1.58197 0.47483 0.89761 1.24437
CSO 0.70898 1.20201 1.49394 0.47161 0.87640 1.18923
TST 0.75983 1.51041 2.24304 0.48317 0.95661 1.41139

3·0-Present 3·0 analysis: PSO-Parabolic Shear Deformation theory; CSO-Constant Shear Deformation
theory: TST- Thin Shell Theory.
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shell with hiR =om (hla =0.1 and Ria = 10). almost exact results are obtained with
N" = I as may be inferred from this table. From Tables 2 and 3 one may observe that a
greater number of divisions have to be made in the shell thickness for lower modes and
lower aspect ratios to achieve the required convergence. Thus one can conclude that if the
hiR ratio of the shell is ~O.Ol. no division of the thickness of the shell is required. It may
also be noted that for layered shells with hiR ~ om at its middle surface. no sub-division
of each layer is necessary. Thus all the numerical results presented in this paper have been
obtained by keeping the hlR ratio of <0.01 for any sub-layer.

Tables 4-6 depict frequency values for homogeneous and two-layered cylindrical shells
with different h/a. R/a and (m. n) values. and those for spherical shells are shown in Tables
7-9. One may observe from these tables that, in most cases. the frequency values for
homogeneous shells are higher as compared to those of the two-layered (0/90) shells. But
for higher modes, two-layered shells give higher frequencies than the homogeneous shells.
It may be seen from these tables that PSO and TST predict consistently higher frequency
values when compared with the 3-D analysis. whereas CSO predicts lower values in most
cases but for some (R/a = I) two-layered shells. it predicts higher values.

From Tables 4 and 7 it may be said here that the errors in the 2-D theories increase
with increasing shell thickness. The errors in PSO and CSO are negligible for cylindrical
shells with h/a = 0.05 whereas. even for such a thin cylindrical shell the error in TST is
about 4.3% for homogeneous (R/a = I) shells, and this error increases to 6% for homo­
geneous plates. Also, it may be said here that the errors in the 2-D theories are higher for
spherical shells as compared to those for cylindrical shells. For thick shells, the frequency
values from TST are in greater discrepancy when compared with the 3-0 analysis. and

Tanh: 5. Cllmparislln of fundamental frequencie~ (0) for orthotropic homogeneolls cylindrical ~hell~ for different
wave numbers (alh .. I. R:/a =0 I. hla = 0.1. II R l = O. 0 .. OtIJI'/E,l

/I m-I m" 2 m" 3 m .. 4 m" 5 m == 6

3-l> 1.32416 3.421156 5.655911 7.1111524 10.109113 12.31165
I'SD 1.33745 3.434117 5.611570 8.00360 10.419'111 12.96K62
CSI) 1.2911511 3.195311 5.133113 7.031169 8.911157 10.7112116
TST 1.57257 5.260411 7.34788 9.412114 11.533112 13.68637

3·D 1.65929 3.59532 5.77045 7.09557 10.111638 12.39924

:2 I'SD 1.69031 3.60790 5.80137 8.09173 10.49072 13.02658
CSD 1.63768 3.36074 5.241150 7.13296 9.00:m 10.1160911
TST 1.99961 5.85093 9.08880 10.84096 12.72805 14.70735

3·D 2.50573 4.08989 6.10449 8.22842 10.311124 12.57257

3 PSD 2.53918 4.10523 6.13436 8.34022 10.68794 13.18882
CSD 2.44409 3.83876 5.57354 7.38087 9.20609 11.03596
TST 3.098011 6.45360 11.36729 12.87246 14.50117 16.26705

3·D 3.645112 4.89994 6.68608 8.67551 10.75359 12.87744

4
PSI) 3.67091 4.9118i 6.71169 8.78055 11.04046 13.480511
CSD 3.49515 4.59461 6.12261 7.80606 9.55271 11.32941
TST 4.77389 7.53134 13.18665 15.26604 16.66900 18.22746

3-D 4.92951 5.93701 7.48804 9.31267 11.27750 13.32086

5 PSD 4.942112 5.94121 7.50705 9.40951 11.553311 13.90986
CSD 4.65406 5.53630 6.1l581111 8.39601 10.04962 11.74416
TST 6.119750 9.13471 14.23784 17.87185 19.09700 20.47352

3-0 6.211273 7.11414 8.457111 10.112311 11.948117 13.89574

6 PSO 6.2114111 7.11024 8.47035 10.20163 12.21433 14.47086
CSO 5.85751 6.58546 7.73038 9.12068 10.65287 12.27984
TST 9.36898 11.20323 15.62888 20.59374 21.59722 22.92106

3-0 7.66909 8.37330 9.54541 11.04051 12.74557 14.58772

7 PSO 7.66367 8.36430 9.55452 11.12540 13.00356 15.15128
CSO 7.07696 7.69351 8.69288 9.84800 11.36766 12.89485
TST 12.10934 13.64076 17.42526 23.26989 24.41370 25.51177

3-0 9.07057 9.68036 10.03301 12.06614 13.64472 15.38031

8 PSO 9.06401 9.67213 10.72479 12.15254 13.90077 15.93704
CSO 8.29955 8.83331 9.71513 10.85103 12.16411 13.60064
TST 15.05423 16.35665 19.58430 25.20054 27.21024 28.20581

lAS 21,1000
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Table 6. Comparison of fundamental frequencies (0) for orthotropic two-layered (0/90) cylindrical shells for
different wave numbers (alb = I. RJa = I. hla =0.1. II R I =0.0 =najPi"i:)

n m= 1 m=2 m = 3 m=4 m = 5 m=6

3-0 1.04085 2.41276 4.11579 5.93372 7.78184 9.62817
PSO 1.09189 2.45460 4.23881 6.21438 8.29333 10.45184
CSO 1.07475 2.34178 3.89006 5.51004 7.13494 8.74763
TST 1.14313 2.83420 5.57063 9.18375 13.46425 17.41943

3·0 2.09560 3.00690 4.47600 6.17789 7.96114 9.76724

2
PSO 2.23166 3.11351 4.63052 6.47026 8.47328 10.58518
CSO 2.10261 2.91833 4.21882 5.71108 7.26438 8.83414
TST 2.64497 3.77786 6.19582 9.64978 13.84158 18.53581

3-0 3.79493 4.40105 5.53384 6.99587 8.61936 10.31605

3
PSO 4.03139 4.60653 5.75652 7.32258 9.14262 11.12949
eso 3.64408 4.18708 5.18111 6.45052 7.85330 9.31876
TST 5.46%8 6.17649 7.94639 10.85995 14.66478 19.07848

3-D 5.63314 6.08162 6.96436 8.18815 9.62322 11.17793

4 PSO 6.03517 6.45147 7.32643 8.61674 10.21128 12.02542
eso 5.27341 5.67727 6.44935 7.50530 8.73691 10.07120
TST 9.28491 9.64745 10.85959 13.08162 IK.26925 20.20189

3-D 7.48761 7.8550() 8.57043 9.60352 10.86447 12.27431

5
PSD 8.13620 8.46125 9.15315 10.21892 11.59781 13.22603
CSO 6.9()64K 7.23117 7.85529 K.74126 9.81579 11.01692
TST 13.49K25 13.84378 14.66423 16.26830 IK.76569 22.07201

3·0 8.6K429 9.4979K 10.25407 11.14312 12.25850 13.53670

6 PSD 10.31101 10.57769 II.I44K3 12.07983 11.02184 12.10090
CSO 8.52564 8.80021 9.32326 10.079113 11.021114 12.10090
TST 17.17463 18.48576 19.06173 20.19360 22.067110 24.71657

3-0 11.18770 11.44636 11.85606 12.74791 13.74617 14.91182

7
PSO 12.561116 12.787811 13.26611 14.02998 15.07075 16.36456
CSO 10.12930 10.36944 10.82037 11.47820 12.31147 13.28365
TST 19.13495 23.24020 23.80560 24.61440 25.99090 211.04362

3-D 12.99253 13.22186 13.68342 14.29142 15.28707 16.35Kllll
PSO 14.98969 15.09425 15.50632 16.16905 17.011463 18.24131

8 CSO 11.71966 11.83443 12.33183 12.91299 13.65742 14.53780
TST 21.01155 27.22880 211.67141 29.32695 30.34223 3I.904K3
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Table 1. Comparison of fundamental frequencies (n) for orthotropic homogeneou~d two-layered (0':90)
spherical shells for different Ria and /r,a ratios (alb = I. n= CluJpIE,)

Homogeneous shell 0;90 Shell

R,'a /r/a = 0.05 Ira = 0.1 /r/a=0,15 /ria = 0.05 /ria =0.1 /rIa = 0.15

3-D 1.21403 1042811 1.600U 1.29835 1.39914 1.51936
PSD 1.28525 1.60538 1.84983 1.32595 1.49015 1.68141
CSD I.280lN 1.51496 1.78352 1.32483 1.48008 1.64191
TST 1.30651 1.79568 2.31996 1.33000 1.52391 1.18940

3-D 0.81102 1.29295 1.58068 0.19511 1.05528 1.31111

2 PSD 0,90ft91 1.35302 1.658118 0.KI059 1.091011 1.38083
CSD 0.90021 1.31341 1.51169 0.80l!10 1.08054 1.33315
TST 0.93961 1.59211 2.281 III 0.81618 1.14501 1.52105

3·D 0.19315 1.26150 1.58194 0.64044 0.96911 1.26650

3
PSD 0.IlOllh5 1.2\)559 1.61114 O.6494\) 0.9<J.\30 1.301115
CSD O.IlIKI93 1.25354 1.53231 0.h4113 0.91455 1.25ft911
TST O.1l45h9 1.541113 2.26036 0.65602 1.04651 1.46512

3-[) O.1ftlll 1.25ll59 1.5ll279 0.51419 0.')3631 1.25032

4
I'S[) 0.110·N 1.21445 1.601% O.5ll03ll O.95JO(, 1.2l!OlJ:!
CSI> 0.16234 1.23141 1.51516 0.51115 0.9.1.132 1.22l!1O
TST O.llO950 1.531ll6 2.252ll5 O.5ll14') 1.00l!62 1.44211

3-£1 0.14512 1.25446 1.5l!J:!6 0.5403') O.lJ:!OM 1.24212

5 I'SI> 0.152UJ 1.2(1446 1.594ll2 O.545(KI 0.93361 1.26191
CS[) O.14.llJlJ 1.220% 1.501911 0.54219 O.')133l! 1.21434
TST 0.19206 1.52420 2.24934 0.55241 0.9<J034 1.43120

3-[) 0.1241JO 1.24ll% I.5ll3% 0049121 0.119912 1.23249

10
I'SI) 0.12654 1.250<J4 1.5l!520 0.49341 0.90619 1.25034
('SI> O.111ll4 1.20619 lo4914ll U.49031 0.1l1l5114 1.19559
1'S1' 0.16ll04 I.5l3llll 2.24462 0,50149 0.96519 1.41639

3·l) 0.11920 1.24151 1.511415 0.411112 0.ll9363 1.22992

20
I'SI) 0.12IKKI 1.24152 1.5112111 0.41955 0.119992 1.245116
CSD 0.11121 1.20321 1.494ll3 0,41636 0.1111117 1.190113
1'S1' 0.161ll9 1.511211 2.24343 0.4ll1112 0.951116 1.41264

3-D 0.11139 1.24612 1.511121 0.47365 0.1l9119 1.22905
PSD 0.111ll0 1.2463ll 1.511191 0.414113 0.119761 1.24431

Yo ('Sl) 0.10ll9ll 1.20201 1.49394 0.41161 0.1l1640 1.18923
1'S1' 0.159ll3 1.51041 2.24304 0.4ll317 0.95661 1.41139
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Table 8. Comparison of fundamental frequencies (n, for orthotropic homogeneous spherical shells for different
wave numbers (alb = I. R,!a =R:!a = I. h!a =0.1. n=naJp!E.>

n m= I m = 2 m=3 m=4 m = 5 m=6

3-D 1.42872 3.27331 5.50649 7.75736 9.99933 12.23533
PSD 1.60538 3.46843 5.68772 7.99846 10.41384 12.96535
CSD 1.57496 3.23244 5.13567 7.03161 8.90895 10.77278
TST 1.78568 5.36828 7.35255 9.41377 11.53411 13.68648

3-D 2.07600 3.53429 5.66760 7.87736 10.09809 12.32027

2 PSD 2.21695 3.71369 5.83763 8.10798 10.49975 13.03416
CSD 2.18070 3.47708 5.28908 7.14946 9.00877 13.86177
TST 2.44004 5.91644 9.10874 10.84443 12.72913 14.70778

3-D 3.06516 4.10922 6.03992 8.15349 10.31955 12.50657

3
PSD 3.17490 4.26364 6.19484 8.37051 10.70610 13.20203
CSD 3.10694 4.01268 5.64279 7.41557 9.22524 11.04674
TST 3.59212 6.52707 11.44004 12.87985 14.50339 16.26794

3-D 4.32251 4.98212 6.65598 8.62103 10.59572 12.82174

4 PSD 4.J4029 5.10655 6.79153 8.82192 11.06554 13.49799
CSD 4.20587 4.80924 6.21447 7.85502 9.58212 11.34823
TST 5.22100 7.61657 13.29738 15.27933 16.67263 18.22890

3-0 5.55345 6.06453 7.41l1l02 9.276RK 11.23209 13.27414

5
PSI) 5.C>170K 6.IW32 7.C>0257 9.46037 Il.SK443 13.93101
(,SO 5.31l341l 5.71l017 6.96917 R.4561l4 1O.07R50 11.76950
TST 7.26633 9.22016 14.27403 17.1l9553 19.10233 2O.47551l

3·1) 6.90523 7.2744.1 1I.41l311l 10.09355 11.91499 13.1l5729

6 PSI> 6.95129 7.34651 1l.571l64 10.26071l 12.25076 14.49551
('SD 6.59072 6.115176 7.115617 9.1811<2 1O.(1)IlO7 12.30179
TST 9.651130 11.27930 15.65315 20.64231< 21.704(,9 22.923112

3·0 11.28209 1l.551l10 9.59200 11.03685 12.722311 14.55700

7 PSD 1l.31543 1<.61333 9.67339 11.191116 13.04496 15.17923
CSO 7.110437 7.97794 8.113210 10.O21l34 11.41942 12.93077
TST 12.32775 13.70261 17.44443 23.43373 24.42396 25.51531

3-0 9.66931 9.88399 10.77771 12.07596 13.63132 15.356110

8 PSO 9.69664 9.93085 10.85258 12.22547 13.94671 15.9611 12
CSO 9.01444 9.13267 9.866211 10.93976 12.22191 13.64107
TST 15.21175 16.40283 19.59905 25.27066 27.22444 211.21021



Analysis of doubly curved shallow shells 911

Table 9. Comparison of fundamental frequencies (Q) for orthotropic two-layered (0/90) spherical shells for
different wave numbers (alb = I. R,/a = RJa = I. hla = 0.1. Q = rwJpIE,)

n m= I m = 2 m=3 m=4 m=5 m=6

3·0 1.39974 2.43873 4.05310 5.84554 7.68958 8.79732
PSD 1.49075 2.56254 4.25854 6.20360 8.27291 10.43078
CSD 1.48008 2.46151 3.92396 5.51209 7.12350 8.73011
TST 1.52391 2.89707 5.50027 9.02660 13.24407 17.41747

3-D 2.44203 3.04522 4.41687 5.79381 8.03207 9.68411

2 PSD 2.62378 3.23980 4.60005 6.46350 8.54558 10.56502
CSD 2.52929 3.06519 4.26788 5.72230 7.25997 8.82298
TST 2.92179 3.82427 6.11914 9.48366 13.60235 18.23648

3-D 4.08410 4.43275 5.47411 6.90512 8.52349 10.22652

3 PSD 4.36988 4.72430 5.78704 7.31569 9.12123 11.10530
CSD 4.04792 4.33741 5.23700 6.46472 7.84913 9.30665
TST 5.54551 6.13159 7.83020 10.67702 14.42092 18.78285

3-D 5.71021 6.11283 6.90916 8.09839 9.52445 11.08302

4 PSD 6.3413.1 6.56740 7.36517 8.61625 10.19310 12.00174
CSD 5.6(,932 5.83753 6.51731 7.52796 8.73729 10.06090
TST 9.0.1503 9.4'XI56 10.67910 12.86521 16.011111 19.90538

3-D 7.40020 7.8'XI44 8.52272 9.51883 10.76682 12.17710

5 PSD 8.418'17 8.57K92 9.20134 10.22867 11.58767 13.20768
CSD 7.29670 7.40360 7.93734 8.77559 9.82431 11.01175
TST 12.97(1'JJ 13.55461 14.40547 16.OIl501l 18.48406 21.76722

J-[) 9.03246 9.69485 10.21499 11.0(,553 12.16473 13.4400l)

6
I)Sl> 11I.573113 1O.69711K 11.20196 12.059')6 IJ.23292 14.67443
CSD 8.90756 8.98359 9.41883 10.12649 11.04010 12.10281
TST IK.43406 IK.OIS80 18.71242 19.87494 21.75386 24.J9637

J-[) 11.43566 11.49662 11.93697 12.67820 13.657110 14.111747

7 PSD 12.110J45 12.90734 13.3JOJI 14.06064 15.08097 16.36371
CSO 8.90756 1l.911J59 9.411183 10.12649 11.04010 12.102111
TST 16.43406 Ill.015110 Ill.71242 19.117494 21.753116 24.39637

3-0 13.24313 13.28095 13.66228 14.28615 15.20492 16.26823

8 PSO 15.11949 15.21162 15.57526 16.20775 17.10415 18.24960
CSO 12.07631 12.13174 12.44884 12.98151 13.69501 14.55550
TST 20.858JI 26.32647 28.07046 28.87560 29.94918 31.53944
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hence make TST unacceptable for thick shells. As the radius of the shell increases. the error
in PSD decreases and that in CSD increases. It may be seen from these tables that the
predictions of PSD are remarkably accurate. even for thick shells with higher (m. n) values
than those of CSD. when compared with the 3-D analysis.

CONCLUSIONS

The three-dimensional elasticity solution for free vibration of doubly curved. shallow
shells on rectangular planform and made of an orthotropic material has been presented.
Using the assumption that the thickness to radius ratio is negligible compared to unity. the
governing equilibrium equations have been reduced to differential equations with constant
coefficients. Furthermore. by dividing the shell thickness into a number of layers. such that
their individual thickness to radius ratio is kept as low as practicable (and in this study it
is shown to be Ii 100). very accurate results were obtained for thick shallow shells. Numerical
results indicate that the parabolic shear deformation theory and the thin shell theory
consistency overestimate the frequencies. whereas the Mindlin-type constant shear defor­
mation theory underestimates the frequencies in most cases. except in some cases when
compared with the present 3-D unulysis. This indicates that the frequencies from the
parabolic shear deform.ltion theory and the c1ussicul shell theory are the upper bounds
(bounds being narrowed in the case of the parabolic shear deformation theory). whereas
those from the Mindlin-type constant shear deformation theory arc the lower bounds to
the actual values from the 3-D analysis. Comp<lrison studies <llso indicate that the thin shell
theory results .lre uO<lccept<lblc for thick shells with a thickness-to-radius mtio of more than
1/20. The present analysis can easily he extended to shallow shell surllices with twist.
such as a hyperbolic paraboloid (hypar shell). by including the twist term in the strain­
displ.ll:emenl relations (I) .llld the equilibrium eqwltions (5).

Ackno.../l·tft/I·fl/I·/If.f-The author Ihanks Mrs "riyadarshini for her hell' in lhe preparatillll (If lhe m;lIlllscript .lIld
f(lr her hell' in ohtaining the nUlllerical results. The critical e(lllllllents (If lhe Iwo anonymous rcli:rt:es (In an earlier
version (If lhe Illanuscript. ami Ihcir interest in Ihis work is gratefully adnowicliged. This w(lrk WilS c;lrried out
when the ;ttlllwr was at the University (lfC.lllterhury. !'rivate n"g. ChristdlUrch. New Zealand.
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APPENDIX

Definitions of ('1'-(.", appearing in eqns (12) and (14):

(', =a"b ... : Cz = a..b,. +a'1bO

CJ =a"b" +apb ,• +al8bu +aub, +a..b,

c. = al,b.. +apb" +a,.b,. +aubz +a'Jb, +a..o. +a"b,

c, = a,.bp+apb,.+a..b"+aubJ+a"bz+a,.b1+a,,b.

c. = Ifl1bp+al8h,.+aub.+a"b,+a..b.+a"b1

c, = allb p +a,)h. +a"b,.

Definitions for b,-b., appearing in eqn (17):

b, = -a,a,: bz = -a,a.-a,a7: b) = a.a,o-a,a.-a,a.

h. = a,tI" -a,a.: h, = -tl,a,o; h, = -ala"~ -aza",

b, = -a,tI,o -aza" +a,a,; b. = -a.,tI" +a.tI.

h. = (Nh, +.'Itfh,lC•• : b ,o = (Nhz+ Mb.)C.,; b" = {Nh.. +Mh1)C••

hn = (Nh. + Mb.lC•• : bl.1 = a,a,: h.. = a,tl. +aztl,

hI' = (h, + Mh"lC.. : hi. = (h, + Mh .. -h.JR,)C.. ; hzo = (b, + Mh., -hz/R,)C..

h,. "" (h,+Mh,.-h,fR,lC.. : II ll =(Mh'7-h,/R,)C•• : hH ={h,+Nh ...lC"

h,. = (11.+ Nh .. -h,/Rz)C,,; hl) = {h1+Nhu -h./Rz)C"

hz• = (h.+Nh,.-h,/R,)C,,: hl1 =(Nh ,1 -h./RzlC,,: bz• =h ...C"

[C" Cn] [C" CIZJh,., =8:,' + '"R-; h"+C,,b ,.: bill = 'R; + R;' b,,+Cl.1hu-C,IMh,-CI2Nh,

[C" Cn]h ll =R;' + 'R; h"+C"b,.-C,,Mbl-C,zNb.

L [C" C':JL .."n = Ii": + R
z

"" +C "h l1 -C"Mb) -C,zNb1

[
C" CIZJb o = Ii": + Ii; hp-C"Mb,-CnNh.: bJ• "" Cub"

[CIl CnJ [Cu Cn]bJ> = Ii": + Ii; bll +CZlb .. : b16 = If; + Ii; b,,+C2jbl,-CllMb,-CnNb,

bn = [~~; + ~lz:Jb"+CZjb',-C'2Mbl-CZ2Nb.

bJ• = [~I,Z + ~':Z]bl,+CUbl1-C12MbJ-ClZNb1

[
C,Z ClZ]hi. = If; + R

z
h ,7 -C Il Mb,-Cu Nb.: b•• ,. CHbl)

[
CII CZl] [CI) C Zl]b., = If; + R

z
bl)+Cnb.. : b' l = If; + R

z
b..+CHb,,-CljMb,-CuNb,

b., = [~',) + ~Z:]b,,+CHbI6-C ...Mhz-CUNh6

[
C Ll CuJh•• = If; + R, b"+CJ,,hl1-CLlMbJ-CuNb1

[ C' l CuJh., = If; + R, bp-CuMb.-CuNb•.


